Skip to main content
Log in

Temporal dynamic of wood formation in Pinus cembra along the alpine treeline ecotone and the effect of climate variables

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

We determined the temporal dynamic of cambial activity and xylem development of stone pine (Pinus cembra L.) throughout the treeline ecotone. Repeated micro-sampling of the developing tree ring was carried out during the growing seasons 2006 and 2007 at the timberline (1,950 m a.s.l.), treeline (2,110 m a.s.l.) and within the krummholz belt (2,180 m a.s.l.) and the influence of climate variables on intra-annual wood formation was determined. At the beginning of both growing seasons, highest numbers of cambial and enlarging cells were observed at the treeline. Soil temperatures at time of initiation of cambial activity were c. 1.5°C higher at treeline (open canopy) compared to timberline (closed canopy), suggesting that a threshold root-zone temperature is involved in triggering onset of above ground stem growth. The rate of xylem cell production determined in two weekly intervals during June through August 2006–2007 was significantly correlated with air temperature (temperature sums expressed as degree-days and mean daily maximum temperature) at the timberline only. Lack of significant relationships between tracheid production and temperature variables at the treeline and within the krummholz belt support past dendroclimatological studies that more extreme environmental conditions (e.g., wind exposure, frost desiccation, late frost) increasingly control tree growth above timberline. Results of this study revealed that spatial and temporal (i.e., year-to-year) variability in timing and dynamic of wood formation of P. cembra is strongly influenced by local site factors within the treeline ecotone and the dynamics of seasonal temperature variation, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Antonova GF, Stasova VV (1993) Effects of environmental factors on wood formation in Scots pine stems. Trees (Berl) 7:214–219. doi:10.1007/BF00202076

    Article  Google Scholar 

  • Antonova GF, Stasova VV (1997) Effects of environmental factors on wood formation in larch. Trees (Berl) 11:462–468

    Google Scholar 

  • Auer I, Böhm R, Jurkovic A, Lipa W, Orlik A, Potzmann R, Schöner W, Ungersböck M, Matulla C, Briffa K, Jones P, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisselin J-M, Begert M, Müller-Westermeier G, Kveton V, Bochnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E (2007) HISTALP––historical instrumental climatological surface time series of the Greater Alpine Region. Int J Climatol 27:17–46. doi:10.1002/joc.1377

    Article  Google Scholar 

  • Baig MN, Tranquillini W (1980) The effects of wind and temperature on cuticular transpiration of Picea abies and Pinus cembra and their significance in desiccation damage at the alpine tree line. Oecologia 47:252–256. doi:10.1007/BF00346828

    Article  Google Scholar 

  • Baskerville GL, Emin P (1969) Rapid estimation of heat accumulation from maximum and minimum temperatures. Ecology 50:514–517. doi:10.2307/1933912

    Article  Google Scholar 

  • Bräker OU (1981) Der Alterstrend bei Jahrringdichten und Jahrringbreiten von Nadelhölzern und sein Ausgleich. Mitt Forstl Bundesvers Wien 142:75–102

    Google Scholar 

  • Büntgen U, Esper J, Frank DC, Nicolussi K, Schmidhalter M (2005) A 1052-year tree-ring proxy for Alpine summer temperature. Clim Dyn 25(2–3):141–153. doi:10.1007/s00382-005-0028-1

    Article  Google Scholar 

  • Camarero JJ, Guerrero-Campo J, Gutiérrez E (1998) Tree-ring growth and structure of Pinus uncinata and Pinus sylvestris in the Central Spanish Pyrenees. Arct Alp Res 30(1):1–10. doi:10.2307/1551739

    Article  Google Scholar 

  • Cannell MGR, Smith RI (1986) Climatic warming, spring budburst and frost damage on trees. J Appl Ecol 23:177–191. doi:10.2307/2403090

    Article  Google Scholar 

  • Carrer M, Nola P, Eduards JL, Motta R, Urbinati C (2007) Regional variability of climate-growth relationships in Pinus cembra high elevation forests in the Alps. J Ecol 95:1072–1083. doi:10.1111/j.1365-2745.2007.01281.x

    Article  Google Scholar 

  • Cook ER, Kairiukstis LA (eds) (1990) Methods of dendrochronology applications in the environmental sciences. Kluwer, Dordrecht

    Google Scholar 

  • Day TA, DeLucia EH, Smith WK (1989) Influence of cold soil and snowcover on photosynthesis and leaf conductance in two Rocky Mountain conifers. Oecologia 80:546–552. doi:10.1007/BF00380080

    Article  Google Scholar 

  • DeLucia EH (1986) Effect of low root temperature on net photosynthesis, stomatal conductance and carbohydrate concentration in Engelmann spruce (Picea engelmannii Parry ex Engelm.) seedlings. Tree Physiol 2:143–154

    PubMed  CAS  Google Scholar 

  • Deslauriers A, Morin H (2005) Intra-annual tracheid production in balsam fir stems and the effect of meteorological variables. Trees (Berl) 19:402–408. doi:10.1007/s00468-004-0398-8

    Article  Google Scholar 

  • Deslauriers A, Morin H, Begin Y (2003) Cellular phenology of annual ring formation of Abies balsamea in the Quebec boreal forest (Canada). Can J Res 33:190–200. doi:10.1139/x02-178

    Article  Google Scholar 

  • Domisch T, Finér L, Lehto T (2001) Effects of soil temperature on biomass and carbohydrate allocation in Scots pine (Pinus sylvestris) seedlings at the beginning of the growing season. Tree Physiol 21:465–472

    PubMed  CAS  Google Scholar 

  • Dullinger S, Dirnböck T, Grabherr G (2004) Modelling climate change-driven treeline shifts: relative effects of temperature increase, dispersal and invisibility. J Ecol 92:241–252. doi:10.1111/j.0022-0477.2004.00872.x

    Article  Google Scholar 

  • Eckstein D, Aniol RW (1981) Dendroclimatological reconstruction of the summer temperatures for an alpine region. Mitt Forstl Bundesvers Wien 142:391–398

    Google Scholar 

  • FAO (1998) World reference base for soil resources. FAO, Rome

  • Frenzel B, Maisch I (1981) Klimatische Analyse der Jahrringbreitenschwankungen an der alpinen Waldgrenze. Mitt Forstl Bundesvers Wien 142:399–416

    Google Scholar 

  • Frank D, Esper J (2005) Characterization and climate response patterns of a high-elevation, multi-species tree-ring network in the European Alps. Dendrochronologia 22:107–121. doi:10.1016/j.dendro.2005.02.004

    Article  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic Press, London

    Google Scholar 

  • Gartner BL, Aloni R, Funada R, Lichtfuss-Gautier AN, Roig FA (2002) Clues for dendrochronology from studies of wood structure and function. Dendrochronologia 20(1–2):53–61. doi:10.1078/1125-7865-00007

    Article  Google Scholar 

  • Gehrig-Fasel J, Guisan A, Zimmermann NE (2007) Tree line shifts in the Swiss Alps: climate change or land abandonment? J Veg Sci 18:571–582. doi:10.1658/1100-9233(2007)18[571:TLSITS]2.0.CO;2

    Article  Google Scholar 

  • Grace J (1988) The functional significance of short stature in montane vegetation. In: Werger MJA, Van der Aart PJM, During HJ, Verhoeven JTA (eds) Plant form and vegetation structure. SPB Academic Publishers, The Hague, pp 201–209

    Google Scholar 

  • Grace J, Norton DA (1990) Climate and growth of Pinus sylvestris at its upper altitudinal limit in Scotland: evidence from tree growth-rings. J Ecol 78:601–610. doi:10.2307/2260887

    Article  Google Scholar 

  • Grace J, Allen SJ, Wilson C (1989) Climate and the meristem temperatures of plant communities near the tree-line. Oecologia 79:198–204. doi:10.1007/BF00388479

    Article  Google Scholar 

  • Grace J, Berninger F, Nagy L (2002) Impacts of climate change on the tree line. Ann Bot (Lond) 90:537–544. doi:10.1093/aob/mcf222

    Article  CAS  Google Scholar 

  • Gričar J, Zupančič M, Čufar K, Primož O (2007) Regular cambial activity and xylem and phloem formation in locally heated and cooled stem portions of Norway spruce. Wood Sci Technol 41(6):463–475. doi:10.1007/s00226-006-0109-2

    Article  CAS  Google Scholar 

  • Guggenberger H (1980) Untersuchungen zum Wasserhaushalt der alpinen Zwergstrauchheide Patscherkofel. PhD thesis, University of Innsbruck

  • Havranek WM (1972) Über die Bedeutung der Bodentemperatur für die Photosynthese und Transpiration junger Forstpflanzen und für die Stoffproduktion an der Waldgrenze. Angew Bot 46:101–116

    Google Scholar 

  • Hellmers H, Genthe MK, Ronco F (1970) Temperature affects growth and development of Engelmann spruce. For Sci 16:447–452

    Google Scholar 

  • Hughes MK (2002) Dendrochronology in climatology––the state of the art. Dendrochronologia 20(1–2):95–116. doi:10.1078/1125-7865-00011

    Article  Google Scholar 

  • Jobbagy EG, Jackson RB (2000) Global controls of timberline elevation in the northern and southern hemispheres. Glob Ecol Biogeogr 9:253–268. doi:10.1046/j.1365-2699.2000.00162.x

    Article  Google Scholar 

  • Kirdyanov A, Hughes M, Vaganov E, Schweingruber F, Silkin P (2003) The importance of early summer temperature and date of snow melt for tree growth in the Siberian Subarctic. Trees (Berl) 17:61–69. doi:10.1007/s00468-002-0209-z

    Article  Google Scholar 

  • Körner C (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115:445–459. doi:10.1007/s004420050540

    Article  Google Scholar 

  • Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems, 2nd edn. Springer, Berlin

    Google Scholar 

  • Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31:713–732

    Google Scholar 

  • Lopushinsky W, Kaufmann MR (1984) Effects of cold soil on water relations and spring growth of Douglas-fir seedlings. For Sci 30:628–634

    Google Scholar 

  • Lopushinsky W, Max TA (1990) Effect of soil temperature on root and shoot growth and on budburst timing in conifer seedling transplants. New For 4:107–124. doi:10.1007/BF00119004

    Google Scholar 

  • Loris K (1981) Dickenwachstum von Zirbe, Fichte und Lärche an der alpinen Waldgrenze/Patscherkofel. Mitt Forstl Bundesvers Wien 142:417–441

    Google Scholar 

  • Mäkinen H, Nöjd P, Saranpää P (2003) Seasonal changes in stem radius and production of new tracheids in Norway spruce. Tree Physiol 23:959–968

    PubMed  Google Scholar 

  • Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659. doi:10.1038/17709

    Article  CAS  Google Scholar 

  • Neuwinger I (1970) Böden der subalpinen und alpinen Stufe in den Tiroler Alpen. Mitt Ostalpin-Dinar Ges Veg 11:135–150

    Google Scholar 

  • Nicolussi K (1994) Jahrringe und Massenbilanz. Dendroklimatologische Rekonstruktion der Massenbilanzreihe des Hintereisferners bis zum Jahr 1400 mittels Pinus cembra-Reihen aus den Ötztaler Alpen, Tirol. Z Gletscherk Glazialgeol 30:11–52

    Google Scholar 

  • Oberhuber W (2004) Influence of climate on radial growth of Pinus cembra within the alpine timberline ecotone. Tree Physiol 24:291–301

    PubMed  Google Scholar 

  • Oberhuber W, Kofler W, Pfeifer K, Seeber A, Gruber A, Wieser G (2008) Long-term changes in tree-ring–climate relationships at Mt. Patscherkofel (Tyrol, Austria) since the mid-1980s. Trees (Berl) 22:31–40. doi:10.1007/s00468-007-0166-7

    Article  Google Scholar 

  • Pfeifer K, Kofler W, Oberhuber W (2005) Climate related causes of distinct radial growth reductions in Pinus cembra during the last 200 yr. Veg Hist Archaeobot 14:211–220. doi:10.1007/s00334-005-0001-2

    Article  Google Scholar 

  • Plomion C, Leprovost G, Stokes A (2001) Wood formation in trees. Plant Physiol 127:1513–1523. doi:10.1104/pp.127.4.1513

    Article  PubMed  CAS  Google Scholar 

  • Rossi S, Deslauriers A, Morin H (2003) Application of the Gompertz equation for the study of xylem cell development. Dendrochronologia 21:33–39. doi:10.1078/1125-7865-00034

    Article  Google Scholar 

  • Rossi S, Anfodillo T, Menardi R (2006a) Trephor: a new tool for sampling microcores from tree stems. IAWA J 27:89–97

    Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T (2006b) Assessment of cambial activity and xylogenesis by microsampling tree species: an example at the Alpine timberline. IAWA J 27:383–394

    Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T, Morin H, Saracino A, Motta R, Borghetti M (2006c) Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytol 170(2):301–310. doi:10.1111/j.1469-8137.2006.01660.x

    Article  PubMed  Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T (2007) Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152(1):1–12. doi:10.1007/s00442-006-0625-7

    Article  PubMed  Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T, Carrer M (2008) Age-dependent xylogenesis in timberline conifers. New Phytol 177(1):199–208

    PubMed  Google Scholar 

  • Savidge RA (1996) Xylogenesis, genetic and environmental regulation, a review. IAWA J 17:269–310

    Google Scholar 

  • Schmitt U, Jalkanen R, Eckstein D (2004) Cambium dynamics of Pinus sylvestris and Betula spp. in the northern boreal forest in Finland. Silv Fenn 38(2):167–178

    Google Scholar 

  • Scott PA, Bentley CV, Fayle DCF, Hansell RIC (1987) Crown forms and shoot elongation of white spruce at the treeline, Churchill, Manitoba, Canada. Arct Alp Res 19:175–186. doi:10.2307/1551250

    Article  Google Scholar 

  • Seo JW, Eckstein D, Jalkanen R, Rickebusch S, Schmitt U (2008) Estimating the onset of cambial activity in Scots pine in northern Finland by means of the heat-sum approach. Tree Physiol 28:105–112

    PubMed  Google Scholar 

  • Smith WK, Germino MJ, Hancock TE, Johnson DM (2003) Another perspective on altitudinal limits of alpine timberlines. Tree Physiol 23:1101–1112

    PubMed  Google Scholar 

  • Tranquillini W (1979) Physiological ecology of alpine timberline. Tree existence at high altitudes with special references to the European Alps. Ecological studies, vol 31. Springer, Berlin

    Google Scholar 

  • Vaganov EA, Hughes MK, Shashkin AV (2006) Growth dynamics of conifer tree rings. Images of past and future environments. Ecological Studies, vol 183. Springer, Berlin

    Google Scholar 

  • Vapaavuori EM, Rikala R, Ryyppö A (1992) Effects of root temperature on growth and photosynthesis of conifer seedlings during shoot elongation. Tree Physiol 10:217–230

    PubMed  Google Scholar 

  • Wang L, Payette S, Bégin Y (2002) Relationship between anatomical and densitometric characteristics of black spruce and summer temperature at tree line in northern Quebec. Can J Res 32:477–486. doi:10.1139/x01-208

    Article  Google Scholar 

  • Wieser G (2004) Seasonal variation of soil respiration in a Pinus cembra forest at the timberline in the Central Austrian Alps. Tree Physiol 24:475–480

    PubMed  Google Scholar 

  • Wilson C, Grace J, Allen S, Slack F (1987) Temperature and stature: a study of temperatures in montane vegetation. Funct Ecol 1:405–413. doi:10.2307/2389798

    Article  Google Scholar 

  • Zeide B (1993) Analysis of growth equations. For Sci 39:594–616

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Austrian Science Fund (Project No. FWF P18819-B03 “Temperature dependence of Pinus cembra (L.) stem growth and respiration along an altitudinal transect”). Precipitation data were provided by Zentralanstalt für Meteorologie und Geodynamik, Innsbruck, which is greatly acknowledged. We also thank anonymous reviewers for valuable suggestions and comments on improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Oberhuber.

Additional information

Communicated by S. Leavitt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruber, A., Baumgartner, D., Zimmermann, J. et al. Temporal dynamic of wood formation in Pinus cembra along the alpine treeline ecotone and the effect of climate variables. Trees 23, 623–635 (2009). https://doi.org/10.1007/s00468-008-0307-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-008-0307-7

Keywords

Navigation