Skip to main content
Log in

Buttress form of the central African rain forest tree Microberlinia bisulcata, and its possible role in nutrient acquisition

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Buttressing is a trait special to tropical trees but explanations for its occurrence remain inconclusive. The two main hypotheses are that they provide structural support and/or promote nutrient acquisition. Studies of the first are common but the second has received much less attention. Architectural measurements were made on adult and juvenile trees of the ectomycorrhizal species Microberlinia bisulcata, in Korup (Cameroon). Buttressing on this species is highly distinctive with strong lateral extension of surface roots of the juveniles leading to a mature buttress system of a shallow spreading form on adults. This contrasts with more vertical buttresses, closer to the stem, found on many other tropical tree species. No clear relationship between main buttress and large branch distribution was found. Whilst this does not argue against the essential structural role of buttresses for these very large tropical trees, the form on M. bisulcata does suggest a likely second role, that of aiding nutrient acquisition. At the Korup site, with its deep sandy soils of very low phosphorus status, and where most nutrient cycling takes place in a thin surface layer of fine roots and mycorrhizas, it appears that buttress form could develop from soil-surface root exploration for nutrients by juvenile trees. It may accordingly allow M. bisulcata to attain the higher greater competitive ability, faster growth rate, and maximum tree size that it does compared with other co-occurring tree species. For sites across the tropics in general, the degree of shallowness and spatial extension of buttresses of the dominant species is hypothesized to increase with decreasing nutrient availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Black HL, Harper KT (1979) Adaptive value of buttresses to tropical trees: additional hypotheses. Biotropica 11:240. doi:10.2307/2388047

    Article  Google Scholar 

  • Chapman CA, Kaufman L, Chapman LJ (1998) Buttress formation and directional stress experienced during critical phases of tree development. J Trop Ecol 14:341–349. doi:10.1017/S0266467498000261

    Article  Google Scholar 

  • Chuyong GB, Newbery DM, Songwe NC (2000) Litter nutrients and retranslocation in a central African rain forest dominated by ectomycorrhizal trees. New Phytol 148:493–510. doi:10.1046/j.1469-8137.2000.00774.x

    Article  CAS  Google Scholar 

  • Christensen-Dalsgaard KK, Fourier M, Ennos AR, Barfod AS (2007) Changes in vessel anatomy in response to mechanical loading in six species of tropical trees. New Phytol 176:610–622. doi:10.1111/j.1469-8137.2007.02227.x

    Article  PubMed  Google Scholar 

  • Clarke MRB (1980) The reduced major axis of a bivariate sample. Biometrika 67:441–446. doi:10.1093/biomet/67.2.441

    Article  Google Scholar 

  • Crook MJ, Ennos AR, Banks JR (1997) The function of buttress roots: a comparative study of the anchorage systems of buttressed (Aglaia and Nephelium ramboutan species) and non-buttressed (Mallotus wrayi) tropical trees. J Exp Bot 48:1703–1716

    CAS  Google Scholar 

  • Davis TWA, Richards PW (1934) The vegetation of Morabilli Creek, British Guiana: an ecological study of a limited area of tropical rain forest. Part II. J Ecol 22:106–155. doi:10.2307/2256098

    Article  CAS  Google Scholar 

  • Ennos AR (1993) The function and formation of buttresses. Trends Ecol Evol 8:350–351. doi:10.1016/0169-5347(93)90217-D

    Article  Google Scholar 

  • Fisher JB (1982) A survey of buttresses and aerial roots of tropical trees for presence of reaction wood. Biotropica 14:56–61. doi:10.2307/2387760

    Article  Google Scholar 

  • Fisher NI (1993) Statistical analysis of circular data. Cambridge University Press, Cambridge

    Google Scholar 

  • Francis WD (1924) The development of buttresses in Queensland trees. Proc R Soc Queensl 36:21–37

    Google Scholar 

  • Francis WD (1929) Australian rain-forest trees. Government Printer, Brisbane

    Google Scholar 

  • Gartlan JS, Newbery DM, Thomas DW, Waterman PG (1986) The influence of topography and soil phosphorus on the vegetation of Korup Forest Reserve, Cameroun. Vegetatio 65:131–148. doi:10.1007/BF00044814

    Article  Google Scholar 

  • Gérard P (1960) Etude écologique de la forêt dense à Gilbertiodendron dewevrei dans la région de l’Uele. Publ Inst Nat Etud Agron Cong Belg Série Sci No 87:1–159

    Google Scholar 

  • Germain R, Evrard C (1956) Etude écologique et phytosociologique de la forêt à Brachystegia laurentii. Publ Inst Natl Etud Agron Cong Belg Série Sci No 67:1–105

    Google Scholar 

  • Henwood K (1973) A structural model of forces in buttressed tropical rain forest trees. Biotropica 5:83–93. doi:10.2307/2989657

    Article  Google Scholar 

  • Kaufman L (1988) The role of developmental crises in the formation of buttresses: a unified hypothesis. Evol Trends Plant 2:39–51

    Google Scholar 

  • Lebrun J, Gilbert G (1954) Une classification écologique des forêts du Congo. Publ Inst Natl Etud Agron Cong Belg Séries Sci No 63:1–89

    Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd English edn. Elsevier, Amsterdam

    Google Scholar 

  • Letouzey R (1968) Étude Phytogéographique du Cameroun. LeChevalier, Paris

    Google Scholar 

  • Letouzey R (1985) Notice de la Carte Phytogéographique du Cameroun Au 1:500 000. Institut de la Carte Internationale de la Végétation, Toulouse

    Google Scholar 

  • Lewis AR (1988) Buttress arrangement in Pterocarpus officinalis (Fabaceae): effects of crown asymmetry and wind. Biotropica 20:280–285. doi:10.2307/2388317

    Article  Google Scholar 

  • Louis J, Fouarge J (1949) Macrolobium dewevrei. Fasc. 6. Essences forestières et bois du Congo. Publ Inst Natl Etud Agron Cong Belg, Brussels, pp 1–44

  • Mattheck C (1991) Trees: the mechanical design. Springer, Berlin

    Google Scholar 

  • Mattheck C (1993) Design der Natur: der Baum als Lehrmeister. Rombach, Freiburg

    Google Scholar 

  • McArdle BH (1988) The structural relationship: regression in biology. Can J Zool 66:2329–2339

    Article  Google Scholar 

  • Navez AE (1930) On the distribution of tabular roots in Ceiba (Bombacaceae). Proc Natl Acad Sci USA 16:339–344. doi:10.1073/pnas.16.5.339

    Article  PubMed  CAS  Google Scholar 

  • Newbery DM, Alexander IJ, Rother JA (1997) Phosphorus dynamics in a lowland African rain forest: the influence of ectomycorrhizal trees. Ecol Monogr 67:367–409

    Google Scholar 

  • Newbery DM, Alexander IJ, Thomas DW, Gartlan JS (1988) Ectomycorrhizal rain-forest legumes and soil phosphorus in Korup National Park, Cameroon. New Phytol 109:433–450. doi:10.1111/j.1469-8137.1988.tb03719.x

    Article  Google Scholar 

  • Newbery DM, Gartlan JS (1996) A structural analysis of rain forest at Korup and Douala-Edea, Cameroon. P R Soc Edin 104B:177–224

    Google Scholar 

  • Newbery DM, Songwe NS, Chuyong GB (1998) Phenology and dynamics of an African rainforest at Korup, Cameroon. In: Newbery DM, Prins HHT, Brown ND (eds) Dynamics of tropical communities. Blackwell, Oxford, pp 267–308

    Google Scholar 

  • Newbery DM, van der Burgt XM, Moravie MA (2004) Structure and inferred dynamics of a large grove of Microberlinia bisulcata trees in central African rain forest: the possible role of periods of multiple disturbance events. J Trop Ecol 20:131–143. doi:10.1017/S0266467403001111

    Article  Google Scholar 

  • Newbery DM, Chuyong GB, Zimmermann L (2006) Mast fruiting of large ectomycorrhizal African rain forest trees: importance of dry season intensity, and the resource limitation hypothesis. New Phytol 170:561–579. doi:10.1111/j.1469-8137.2006.01691.x

    Article  PubMed  Google Scholar 

  • Niklas K (1994) Plant allometry: the scaling of form and process. University of Chicago Press, Chicago

    Google Scholar 

  • Payne RW (2000) GenStat reference manual. Lawes Agricultural Trust, Rothampsted

    Google Scholar 

  • Petch T (1928) Buttress roots. Ann Roy Bot Gard Peradeniya 11:277–285

    Google Scholar 

  • Peters RH (1991) A critique for ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Richards PW (1996) The tropical rain forest, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Richter W (1984) A structural approach to the function of buttresses of Quararibea asterolepis. Ecology 65:1429–1435. doi:10.2307/1939123

    Article  Google Scholar 

  • Schwan S (2003) Phenology, resource conservation and tree architecture of large ectomycorrhizal trees in lowland African rain forest at Korup, Cameroon. Diploma (MSc) thesis, University of Bern, Switzerland

  • Smith AP (1972) Buttressing of tropical trees: a descriptive model and new hypotheses. Am Nat 106:32–46. doi:10.1086/282749

    Article  Google Scholar 

  • SPSS (2002) SigmaPlot version 8. SPSS Inc., Chicago

    Google Scholar 

  • Warren SD, Black HL, Eastmond DA, Whaley WH (1988) Structural function of buttresses of Tachigalia versicolor. Ecology 69:532–536. doi:10.2307/1940451

    Article  Google Scholar 

  • Whitford NH (1906) The vegetation of Lamao forest reserve. Philipp J Sci 1:373–428

    Google Scholar 

  • Young TP, Perkocha V (1994) Treefalls, crown asymmetry, and buttresses. J Ecol 82:319–324. doi:10.2307/2261299

    Article  Google Scholar 

  • Zar JH (1996) Biostatistical analysis, 3rd edn. Prentice Hall, London

    Google Scholar 

Download references

Acknowledgments

We thank the Ministries of Forests and Environment (MINEF) and Education, Scientific and Technical Research (MINREST) for permission to conduct this research in Korup National Park; the Conservator of KNP, Albert Kembou, for his kind facilitation and support; our host institute, the Institute of Agronomic Research (IRAD) at Ekona (Head, Simon Zok); Wolfgang Bischoff and Fabienne Zeugin for assistance with tree architecture and relascope survey measurements, respectively, and T. W. Henkel for his valuable comments on the manuscript. This work was supported by Swiss National Science Foundation (Grant #3100-066655, 2002–2005) to D.M.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Newbery.

Appendix

Appendix

Table 4 Mean and 95% confidence limits to buttress variables of adult and juvenile trees and plantation saplings of Microberlinia bisulcata based on logarithmic transformation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newbery, D.M., Schwan, S., Chuyong, G.B. et al. Buttress form of the central African rain forest tree Microberlinia bisulcata, and its possible role in nutrient acquisition. Trees 23, 219–234 (2009). https://doi.org/10.1007/s00468-008-0270-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-008-0270-3

Keywords

Navigation