Skip to main content

Advertisement

Log in

The climate sensitivity of Norway spruce [Picea abies (L.) Karst.] in the southeastern European Alps

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

To investigate the potential of Norway spruce (Picea abies L. Karst) as a palaeoclimate archive in the southeastern European Alps, tree ring chronologies were developed from trees growing at two sites in Slovenia which differed in their ecological and climatological characteristics. Ring width, maximum latewood density, annual height increment and latewood cellulose carbon isotope composition were determined at both sites and the resulting time-series compared with and verified against instrumental climate data for their common period (AD 1960–AD 2002). Results indicate that ring width sensitivity to summer temperature is very site-dependent, with opposing responses at alpine and lowland sites. Maximum density responds to September temperatures, indicating lignification after cell division has ceased. Stable carbon isotopes have most potential, responding strongly to summer temperature in both alpine and lowland stands. Height increment appears relatively insensitive to climate, and is likely to be dominated by local stand dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baillie MGL, Pilcher JR (1973) A simple cross-dating programme for tree-ring research. Tree Ring Bull 33:7–14

    Google Scholar 

  • Briffa KR, Jones PD (1990) Basic chronology statistics and assessment. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology: applications in the environmental sciences. Kluwer academic publishers, Dordrecht, pp 137–152

    Google Scholar 

  • Cook ER (1985) Time series analysis approach to tree ring standardization. University of Arizona, Tucson

    Google Scholar 

  • Cook ER, Holmes RL (1999) Program ARSTAN—chronology development with statistical analysis (users manual for program ARSTAN). Laboratory of Tree-Ring Research, University of Arizona, Tucson

    Google Scholar 

  • Cook ER, Briffa K, Shiyatov S, Mazepa V (1990) Tree-ring standardization and growth trend estimation. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology: applications in the environmental sciences. Kluwer academic publishers, Dordrecht, pp 104–162

    Google Scholar 

  • Cook ER, Briffa KR, Jones PD (1994) Spatial regression methods in dendroclimatology: a review and comparison of two techniques. Int J Climatol 14:379–402. doi:10.1002/joc.3370140404

    Article  Google Scholar 

  • Čufar K, Levanič T, Zupančič M (1995) Slovenija, regija za dendrokronoloske raziskave (Slovenia, a region for dendrochronological investigations). Les 47:133–136

    Google Scholar 

  • Doak CC (1935) Evolution of foliar types, dwarf shoots, and cone scales of Pinus. Ill Biol Monogr 3:106

    Google Scholar 

  • Eckstein D, Bauch J (1969) Beitrag zur Rationalisierung eines dendrochronologischen Verfahrens und zur Analyse seiner Aussagesicherheit. Forstwissenschaftliches Centralblatt 88:230–250. doi:10.1007/BF02741777

    Article  Google Scholar 

  • Frank D, Esper J (2005) Characterization and climate response patterns of a high-elevation, multi-species tree-ring network in the European Alps. Dendrochronologia 22:107–121. doi:10.1016/j.dendro.2005.02.004

    Article  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic Press, London

    Google Scholar 

  • Gagen M, McCarroll D, Edouard JL (2004) Latewood width, maximum density and stable carbon isotope ratios of pine as palaeoclimate indicators in a dry sub-alpine environment in the southern French Alps. Arct Antarct Alp Res 36:166–171. doi:10.1657/1523-0430(2004)036[0166:LWMDAS]2.0.CO;2

    Article  Google Scholar 

  • Gagen M, McCarroll D, Edouard JL (2006) Combining ring width, density, and stable carbon isotope proxies to enhance the climate signal in tree-rings: an example from the southern French Alps. Clim Change 78:363–379. doi:10.1007/s10584-006-9097-3

    Article  CAS  Google Scholar 

  • Gagen M, McCarroll D, Loader NJ, Robertson I, Jalkanen R, Anchukaitis KJ (2007) Exorcising the ‘segment length curse’: summer temperature reconstruction since AD 1640 using non-detrended stable carbon isotope ratios from pine trees in northern Finland. Holocene 17:435–446. doi:10.1177/0959683607077012

    Article  Google Scholar 

  • Gindl W, Grabner M, Wimmer R (2000) The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width. Trees Struct Funct 14:409–414

    Google Scholar 

  • Gričar J, Čufar K, Oven P, Schmitt U (2005) Differentiation of terminal latewood tracheids in silver fir during autumn. Ann Bot (Lond) 95:959–965. doi:10.1093/aob/mci112

    Article  Google Scholar 

  • Grissino-Mayer HD (2001) Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree Ring Res 57:205–221

    Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull 43:69–78

    Google Scholar 

  • Jakša J (2007) Naravne ujme v gozdovih Slovenije/Natural disasters in Slovenian forests. GozdV 65:205–227

    Google Scholar 

  • Jalkanen R, Aalto T, Kurkela T (1995) Development of needle retention in Scots pine (Pinus sylvestris) in 1957–1991 in northern and southern Finland. Trees Struct Funct 10:125–133

    Google Scholar 

  • Jalkanen R, Aalto T, Kurkela T (1998) Revealing past needle density in Pinus spp. Scand J For Res 13:292–296

    Article  Google Scholar 

  • Kurkela T, Jalkanen R (1990) Revealing past needle retention in Pinus spp. Scand J For Res 5:481–485

    Article  Google Scholar 

  • Levanič T (2004) Ugotavljanje starosti dreves. In: Brus R (ed) Staro in debelo drevje v gozdu. Biotehniška fakulteta, Oddelek za gozdarstvo in obnovljive gozdne vire, Ljubljana

  • Lindner F (2000) Dendrochronological analysis of Norway spruce (Picea abies Karst.) growing at various sites in Slovenia (Dendrokronološka analiza rasti smreke (Picea abies Karst.) na različnih rastiščih v Sloveniji). University of Ljubljana, Ljubljana

    Google Scholar 

  • Loader NJ, Robertson I, Barker AC, Switsur VR, Waterhouse JS (1997) An improved technique for the batch processing of small wholewood samples to a-cellulose. Chem Geol 136:313–317. doi:10.1016/S0009-2541(96)00133-7

    Article  CAS  Google Scholar 

  • Loader NJ, McCarroll D, Gagen M, Robertson I, Jalkanen R (2007) Extracting climatic information from stable isotopes in tree rings. In: Dawson TE, Siegwolf RTW (eds) Stable isotopes as indicators of ecological change. Elsevier, New York, pp 27–48

    Chapter  Google Scholar 

  • Loader NJ, Santillo PM, Woodman-Ralph JP, Rolfe JE, Hall MA, Gagen M et al (2008) Multiple stable isotopes from oak trees in southwestern Scotland and the potential for stable isotope dendroclimatology in maritime climatic regions. Chem Geol (in press)

  • Mäkinen H, Nöjd P, Kahle H-P, Neumann U, Bjorn T, Mielikäinen K et al (2002) Radial growth of Norway spruce (Picea abies (L.) Karst.) across latitudinal and altitudinal gradients in central and northern Europe. For Ecol Manage 171:243–259. doi:10.1016/S0378-1127(01)00786-1

    Article  Google Scholar 

  • Mäkinen H, Nöjd P, Kahle H-P, Neumann U, Tveite B, Mielikainen K, Rohle H, Spiecker H (2003) Large-scale climatic variability and radial increment variation of (Picea abies (L.) Karst. in central and northern Europe. Trees Struct Funct 17:173–184

    Google Scholar 

  • McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Q Sci Rev 23:771–801. doi:10.1016/j.quascirev.2003.06.017

    Article  Google Scholar 

  • McCarroll D, Loader NJ (2005) Isotopes in tree rings. In: Leng MJ (ed) Isotopes in palaeoenvironmental research (developments in paleoenvironmental research). Springer, Dordrecht, pp 67–116

    Google Scholar 

  • McCarroll D, Pawellek F (2001) Stable carbon isotope ratios of Pinus sylvestris from northern Finland and the potential for extracting a climate signal from long Fennoscandian chronologies. Holocene 11:517–526. doi:10.1191/095968301680223477

    Article  Google Scholar 

  • McCarroll D, Jalkanen R, Hicks S, Tuovinen M, Pawellek F, Gagen M et al (2003) Multi-proxy dendroclimatology: a pilot study in northern Finland. Holocene 13:829–838. doi:10.1191/0959683603hl668rp

    Article  Google Scholar 

  • National Research Council (2006) Surface temperature reconstructions for the last 2,000 years. National Academies Press, Washington

    Google Scholar 

  • Pichler P, Oberhuber W (2007) Radial growth response of coniferous forest trees in an inner Alpine environment to heat-wave in 2003. For Ecol Manage 242:688–699. doi:10.1016/j.foreco.2007.02.007

    Article  Google Scholar 

  • Reichstein M, Ciais P, Papale D, Valentini R, Running S, Viovy N et al (2007) Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: a joint flux tower, remote sensing and modelling analysis. Glob Change Biol 13:634–651. doi:10.1111/j.1365-2486.2006.01224.x

    Article  Google Scholar 

  • Rinne KT, Boettger T, Loader NJ, Robertson I, Switsur VR, Waterhouse JS (2005) On the purification of a-cellulose from resinous wood for stable isotope (H, C and O) analysis. Chem Geol 222:75–82. doi:10.1016/j.chemgeo.2005.06.010

    Article  CAS  Google Scholar 

  • Robertson I, Switsur VR, Carter AHC, Barker AC, Waterhouse JS, Briffa KR et al (1997) Signal strength and climate relationship in 13C/12C ratios of tree ring cellulose from oak in east England. J Geophys Res 102:19507–19516. doi:10.1029/97JD01226

    Article  Google Scholar 

  • Rossi S, Deslauriers A, Morin H (2003) Application of the Gompertz equation for the study of xylem cell development. Dendrochronologia 21:33–40. doi:10.1078/1125-7865-00034

    Article  Google Scholar 

  • Salminen H, Jalkanen R (2005) Modelling the effects of temperature on height increment of Scots pine at high latitudes. Silva Fenica 39:497–508

    Google Scholar 

  • Sander C, Eckstein D (2001) Foliation of spruce in the Giant Mts. and its coherence with growth and climate over the last 100 years. Ann For Sci 58:155–164. doi:10.1051/forest:2001115

    Article  Google Scholar 

  • Schmidt B (1987) Ein dendrochronologischer Befund zum Bau der Stadtmauer der Colonia Ulpia Traiana. Bonner Jahrb 187:495–503

    Google Scholar 

  • Schweingruber FH (1989) Tree rings: basics and applications of dendrochronology. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Schweingruber FH, Fritts HC, Bräker OU, Drew LG, Schär E (1978) The X-ray technique as applied to dendrochronology. Tree Ring Bull 38:61–91

    Google Scholar 

  • Schweingruber FH, Eckstein D, Serre-Bachet F, Bräker OU (1990) Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia 8:9–38

    Google Scholar 

  • Stanovnik M (1998) Dendroecological analysis of Norway spruce (Picea abies Karst.) from chill sites in the area of Notranjski Snežnik. University of Ljubljana, Ljubljana

    Google Scholar 

  • Wahl ER, Ammann CM (2007) Robustness of the Mann, Bradley, Hughes reconstruction of Northern Hemisphere surface temperatures: examination of criticisms based on the nature and processing of climate evidence. Clim Change 85:33–69. doi:10.1007/s10584-006-9105-7

    Article  Google Scholar 

  • Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213. doi:10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2

    Article  Google Scholar 

  • Wolter EK (1968) A new method for marking xylem growth. For Sci 14:102–104

    Google Scholar 

Download references

Acknowledgments

The work was funded by grants from European Union project (Pine: EVK2-CT-2002-00136 and Millennium: 017008). We are grateful to Martin Zupančič and Peter Cunder from the Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana; Pekka Närhi and Tarmo Aalto from Metla Rovaniemi research unit for their help in the field and laboratory; Jonathan Woodman-Ralph and Paula Santillo, Swansea University, for their dedication and assistance in sample preparation. We are indebted to the Slovenian Forest Service, regional units Bled and Kranj, for enabling us to complete the experimental work in the field. N.J. Loader acknowledges support from the UK NERC NE/C511805/1 and NE/B501504/1. T. Levanič acknowledges travel grant from British Council Partnership in Science Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Levanič.

Additional information

Communicated by H. Cochard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levanič, T., Gričar, J., Gagen, M. et al. The climate sensitivity of Norway spruce [Picea abies (L.) Karst.] in the southeastern European Alps. Trees 23, 169–180 (2009). https://doi.org/10.1007/s00468-008-0265-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-008-0265-0

Keywords

Navigation