Skip to main content

Advertisement

Log in

Bioclimatic model of tree radial growth: application to the French Mediterranean Aleppo pine forests

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

The potential effects of global changes on forests are of increasing concern. Dendrochronology, which deals with long-term records of tree growth under natural environmental conditions, can be used to evaluate the impact of climatic change on forest productivity. However, assessment of climatic change impacts must be supported by accurate and reliable models of the relationships between climate and tree growth. In this study, a bioclimatic model is used to explore the relationships between tree radial growth and bioclimatic variables closely related to the biological functioning of a tree. This model is at an intermediate level of complexity between purely empirical and process-based models. The method is illustrated with data for 21 Aleppo pine (Pinus halepensis Mill.) stands grown under a Mediterranean climate in south-east France. The results show that Aleppo pine growth is mainly controlled by soil water availability during the growing season. The bioclimatic variable which best expresses the observed inter-annual tree growth variations is the actual evapotranspiration (AET). Four parameters were adjusted to simulate dendrochronological data: the soil water capacity, the wilting point, the minimum temperature for photosynthesis, and the end of the growing season. The bioclimatic model gives better results than the standard response function and provides better insight into the functional processes involved in tree growth. The convincing results obtained by the bioclimatic model as well as the limited numbers of parameters it requires demonstrate the feasibility of using it to explore future climatic change impacts on Aleppo pine forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Becker M (1979) Indices de climat lumineux combinant pente et exposition. Bull Ecol 10:125–137

    Google Scholar 

  • Becker M (1984) Indices de climat lumineux selon la pente et l’exposition pour les latitudes de 40 à 50°. Bull Ecol 15:239–252

    Google Scholar 

  • Becker M (1989) The role of climate on present and past vitality of silver fir forests in the Vosges mountains of northeastern France. Can J For Res Rev Can Rech For 19:1110–1117

    Google Scholar 

  • Boreux J-J, Gadbin-Henry C, Guiot J, Tessier L (1998) Radial tree-growth modelling with fuzzy regression. Can J For Res Rev Can Rech For 28:1249–1260

    Google Scholar 

  • Borghetti M, Cinnirella S, Magnani F, Saracino A (1998) Impact of long term drought on xylem embolism and growth in Pinus halepensis Mill. Trees 12:187–195

    Article  Google Scholar 

  • Botkin DB, Janak JF, Wallis JR (1972) Some ecological consequences of a computer model of forest growth. J Ecol 60:849–872

    Google Scholar 

  • Briffa KR (1992) Increasing productivity of “natural growth” conifers in Europe over the last century. Tree rings and environment. Lund University, Department of Quaternary Geology, Ystad, pp 64–71

    Google Scholar 

  • Briffa KR, Jones PD, Schweingruber FH, Karlen W, Shiyatov SG (1996) Tree-ring variables as proxy-climate indicators: problems with low-frequency signals. In: Jones PD, Bradley RS, Jouzel J (eds) Climatic variations and forcing mechanism of the last 2000 years. Springer, Berlin Heidelberg New York, pp 9–41

    Google Scholar 

  • Brochiero F (1997) Ecologie et croissance du pin d’Alep en Provence calcaire. CEMAGREF, Aix-en-Provence

    Google Scholar 

  • Brochiero F, Chandioux O, Ripert C, Vennetier M (1999) Autécologie et croissance du Pin d’Alep en Provence calcaire. For Méditer XX:83–94

    Google Scholar 

  • Cherubini P, Gartner BL, Tognetti R, Braker OU, Schoch W, Innes JL (2003) Identification, measurement and interpretation of tree rings in woody species from Mediterranean climates. Biol Rev 78:119–148

    Article  PubMed  Google Scholar 

  • Constable JVH, Friend AL (2000) Suitability of process-based tree growth models for addressing tree response to climate change. Environ Pollut 110:47–59

    Article  CAS  PubMed  Google Scholar 

  • Deleuze C, Houllier F (1998) A simple process-based xylem growth model for describing wood microdensitometric profiles. J Theor Biol 193:99–113

    Article  Google Scholar 

  • Devaux J-P, Le Bourhis M (1978) La limite septentrionale du Pin d’Alep en France. Etude dendroclimatologique de l’impact des froids exceptionnels. Rev Biol Ecol Méditer V:133–158

    Google Scholar 

  • Efron B (1979) Bootstrap methods: another look at the jacknife. Ann Stat 7:1–26

    MATH  Google Scholar 

  • FAO (1990) FAO–UNESCO soil map of the world. Revised legend. FAO, Rome

    Google Scholar 

  • Federer CA (1982) Transpirational supply and demand: plant, soil, and atmospheric effects evaluated by simulation. Water Resour Res 18:355–362

    Google Scholar 

  • Federer CA, Tritton LM, Hornbeck JW, Smith RB (1989) Physiologically based dendroclimate models for effects of weather on red spruce basal-area growth. Agric For Meteorol 46:159–172

    Article  Google Scholar 

  • Foster J, LeBlanc D (1993) A physiological approach to dendroclimatic modeling of oak radial growth in the midwestern United States. Can J For Res Rev Can Rech For 23:783–798

    Google Scholar 

  • Friedlingstein P, Fung I, Holland E, John J, Brasseur G, Erickson D, Schimel D (1995) On the contribution of CO2 fertilization to the missing biospheric sink. Global Biogeochem Cycles 9:541–556

    Article  CAS  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic, London

    Google Scholar 

  • Fritts HC, Vaganov EA, Sviderskaya I, Shashkin A (1991) Climatic variations and tree-ring structure in conifers: empirical and mechanistic model of tree-ring width, number of cells, cell size, cell-wall thickness and wood density. Clim Res 1:97–107

    Google Scholar 

  • Fritts HC, Shashkin A, Downes GM (1999) A simulation model of conifer ring growth and cell structure. In: Wimmer R, Vetter RE (eds) Tree-ring analysis. CAB International, Wallingford, pp 3–32

    Google Scholar 

  • Gadbin-Henry C (1994) Etudes dendroécologique de Pinus pinea L. Aspects méthodologiques. PhD Thesis, Aix-Marseille III, Marseille

  • Granier A, Biron P, Lemoine D (2000) Water balance, transpiration and canopy conductance in two beech stands. Agric For Meteorol 116:269–283

    Google Scholar 

  • Graumlich LJ, Brubaker LB, Grier CC (1989) Long-term trends in forest net primary productivity: Cascade Mountains, Washington. Ecology 70:405–410

    Google Scholar 

  • Guehl JM (1985) Etude comparée des potentialités hivernales d’assimilation carbonée de trois conifères de la zone tempérée (Pseudotsuga menziesii Mirb., Abies alba Mill. Picea ecelsa Link.). Ann Sci For 42:23–38

    Google Scholar 

  • Guiot J (1991) The bootstrapped response function. Tree Ring Bull 51:39–41

    Google Scholar 

  • Harrison SP, Prentice CI, Guiot J (1993) Climatic controls on Holocene lake-level changes in Europe. Clim Dyn 8:189–200

    Article  Google Scholar 

  • Hättenschwiler S, Körner C (1996) Effect of elevated CO2 and increased nitrogen deposition on photosynthesis and growth of understorey plants in spruce model ecosystems. Oecologia 106:172–180

    Article  Google Scholar 

  • Haxeltine A, Prentice IC (1996) BIOME3: an equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Global Biogeochem Cycles 10:693–709

    Article  CAS  Google Scholar 

  • IPCC (2001) Climate change 2001: impacts, adaptation and vulnerability. Cambridge University Press, Cambridge

    Google Scholar 

  • Jacoby GC, D’Arrigo RD (1995) Tree ring width and density evidence of climatic and potential forest change in Alaska. Global Biogeochem Cycles 9:227–234

    Article  CAS  Google Scholar 

  • Jarvis PG, MacNaughton KG (1986) Stomatal control of transpiration: scaling up from leaf to region. Adv Ecol Res 15:1–49

    Google Scholar 

  • Kirschbaum MUF (2003a) Can trees buy time? An assessment of the role of vegetation sinks as part of the global carbon cycle. Clim Change 58:47–71

    Article  CAS  Google Scholar 

  • Kirschbaum MUF (2003b) To sink or burn? A discussion of the potential contributions of forests to greenhouse gas balances through storing carbon or providing biofuels. Biomass Bioenerg 24:297–310

    Article  CAS  Google Scholar 

  • Korol RL, Milner KS, Running SW (1996) Testing a mechanistic model for predicting stand and tree growth. For Sci 42:139–153

    Google Scholar 

  • Lacointe A (2000) Carbon allocation among tree organs: a review of basic processes and representation in functional–structural tree models. Ann For Sci 57:521–533

    Article  Google Scholar 

  • Lacointe A, Kajji A, Améglio T, Daudet FA, Cruiziat P, Archer P, Frossard JS (1993) Mobilization of carbon reserves in young walnut trees. Acta Bot Gall 4:435–441

    Google Scholar 

  • Larcher W (1995) Physiological plant ecology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Leblanc D, Terrell M (2001) Dendroclimatic analyses using Thornthwaite–Mather type evapotranspiration models: a bridge between dendroecology and forest simulation models. Tree Ring Res 57:55–66

    Google Scholar 

  • Nicault A (1999) Analyse de l’influence du climat sur les variations inter et intraannuelles de la croissance radiale du pin d’Alep (Pinus halepensis Mill.) en Provence calcaire. PhD Thesis, Université d’Aix-Marseille III, Marseille

  • Nicault A, Rathgeber C, Tessier L, Thomas A (2001) Observation sur la mise en place du cerne chez le pin d’Alep (Pinus halepensis Mill.): confrontation entre mesure de croissance radiale, de densité et les facteurs climatiques. Ann For Sci 58:769–784

    Article  Google Scholar 

  • Palutikof JP, Goodess CM, Guo X (1994) Climate change, potential evapotranspiration and moisture availability in the Mediterranean basin. Int J Climatol 14:853–869

    Google Scholar 

  • Prentice C, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon A (1992) A global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr 19:117–134

    Google Scholar 

  • Querejeta JI, Roldán A, Albaladejo J, Castillo V (2001) Soil water availability improved by site preparation in a Pinus halepensis afforestation under semiarid climate. For Ecol Manage 149:115–128

    Google Scholar 

  • Quézel P, Barbéro M (1992) Le pin d’Alep et les espèces voisines: répartition et caractères écologiques généraux, sa dynamique récente en France méditerranéenne. For Méditer XIII:158–170

    Google Scholar 

  • Rathgeber C (2002) Impact des changements climatiques et de l’augmentation du taux de CO2 atmosphérique sur la productivité des écosystèmes forestiers: exemple du pin d’Alep (Pinus halepensis Mill.) en Provence calcaire (France). PhD Thesis, Université d’Aix-Marseille III, Marseille

  • Rathgeber C, Guiot J, Roche P, Tessier L (1999) Augmentation de productivité du chêne pubescent en région méditerranéenne française. Ann Sci For 56:211–219

    Article  Google Scholar 

  • Rathgeber C, Nicault A, Guiot J, Keller T, Guibal F, Roche P (2000) Simulated responses of Pinus halepensis forest productivity to climatic change and CO2 increase using a statistical model. Global Planet Change 26:405–421

    Article  Google Scholar 

  • Ripert C, Nouals D (1998) Proposition de découpage inter-régional en secteurs écologiques homogènes dans la zone méditerranéenne française. CEMAGREF, Aix-en-Provence

    Google Scholar 

  • Ripert C, Vennetier M (2001) Croissance et écologie du pin d’Alep en France. CEMAGREF, Aix-en-Provence

    Google Scholar 

  • Sala A, Tenhunen JD (1996) Simulation of canopy net photosynthesis and transpiration in Quercus ilex L. under the influence of seasonal drought. Agric For Meteorol 78:203–222

    Article  Google Scholar 

  • Schiller G, Cohen Y (1995) Water regime of a pine forest under a Mediterranean climate. Agric For Meteorol 74:181–193

    Article  Google Scholar 

  • Schiller G, Cohen Y (1998) Water balance of Pinus halepensis Mill. afforestation in an arid region. For Ecol Manage 105:121–128

    Google Scholar 

  • Schweingruber FH (1988) Tree rings: basics and applications of dendrochronology. Reidel, Dordrecht

    Google Scholar 

  • Schweingruber FH (1990) Radiodensitometry. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology, applications in environmental sciences. Kluwer, Dordrecht, pp 55–63

    Google Scholar 

  • Serre-Bachet F (1992) Les enseignements écologiques de la variation de l’épaisseur du cerne chez le pin d’Alep. For Méditer 13:171–176

    Google Scholar 

  • Serre-Bachet F, Tessier L (1990) Response function analysis for ecological study. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology. Application in the environmental sciences. Kluwer, Dordrecht, pp 247–258

    Google Scholar 

  • Stephenson N (1990) Climate control of vegetation distribution: the role of water balance. Am Nat 135:649–679

    Article  Google Scholar 

  • Stephenson N (1998) Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scales. J Biogeogr 25:855–870

    Article  Google Scholar 

  • Stokes MA, Smiley TL (1968) An introduction to tree ring dating. Chicago University Press, Chicago

  • Tenenhaus M (1998) La régression PLS. Théorie et pratique. Technip, Paris

    Google Scholar 

  • Torre F, Evans K (2001) Multivariate calibration of sensory data with instrumental measurements: toward the analysis of apple flavour. Agro-industrie et méthodes statistiques, Lille

    Google Scholar 

  • Umetrics (1996) SIMCA-P for windows. Graphical software for multivariate process modeling. Umetrics, Umeå

  • Vennetier M, Ripert C, Brochiero F, Chandioux O (1999) Evolution à court et long terme de la croissance du pin d’Alep en Provence. Conséquences sur la production de bois. For Méditer XX:147–156

    Google Scholar 

  • Wold S, Albano C, Dunn IWJ, Esbensen K, Hellberg S, Johansson E, Sjöström H (1983) Pattern recognition: finding and using regularities in multivariate data. In: Martens J (ed) Food research and data analysis. Applied Science, London

    Google Scholar 

  • Zeide B (2003) The U-approach to forest modeling. Can J For Res Rev Can Rech For 33:480–489

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the European Community through the FORMAT project (contract ENV4-CT97-0641), the SO&P project (contract ENK2-CT-2002-00160) and through a Marie Curie post-doctoral Individual Fellowship (contract EVK2-CT-2002-50021). This study was also supported by the Ministère Français de la Recherche through an individual PhD thesis fellowship. Meteorological data were provided by Météo France. Christian Ripert and Roland Estève helped collect field data. The authors would like to thank Keith Briffa and Jean-Luc Dupouey for their critical review of this paper and the two anonymous reviewers whose comments were helpful in improving the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyrille B. K. Rathgeber.

Appendix

Appendix

Variables and acronym definitions

Category

Name

Code

Type/unit

Tree-ring variable

Early wood density

ED

kg m−3

Early wood width

EW

mm

Late wood density

LD

kg m−3

Late wood width

LW

mm

Tree growth index

TGI

Index

Climate variable

Sum of annual rainfalls

P

mm

Sum of summer rainfalls

SUP

mm

Mean annual temperature

T

°C

Bioclimatic variable

Annual actual evapotranspiration

AET

mm

Annual potential evapotranspiration

PET

mm

AET/PET

α

Index

Annual constrained evapotranspiration

CAET

mm

Growing degree-days above t°C

GDDt

°C

Mean temperature of the coldest month

MTCO

°C

Soil moisture

SM

mm

Topography variable

Stand slope

PENT

°

Confinement

CONF

°

Index of luminous climate (Becker 1979, 1984)

IKR

Index

Geology variable

Bedrock slope

PENS

Semi-quantitative

Bedrock fissuring

FISY

Semi-quantitative

Soil variable

Mean corer test

TARM

cm

Variation coefficient of corer test

TARV

%

Total depth

PRFT

cm

Texture

TEXT

Semi-quantitative

Percentage of gross material

EG%T

%

Vegetation structure variable

Rocks cover

BLOC

Semi-quantitative

Liter cover

LITA

Semi-quantitative

Total cover

RCVT

Semi-quantitative

Aleppo pine total cover

RPAT

Semi-quantitative

Bioclimatic model parameter

Soil water capacity

SWC

mm

First threshold relative to soil humidity

WILT

%

Second threshold relative to temperature

WARMTH

°C

Third threshold stops the growing season

EGS

Day number

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rathgeber, C.B.K., Misson, L., Nicault, A. et al. Bioclimatic model of tree radial growth: application to the French Mediterranean Aleppo pine forests. Trees 19, 162–176 (2005). https://doi.org/10.1007/s00468-004-0378-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-004-0378-z

Keywords

Navigation