Skip to main content
Log in

An approach for modelling the mean fine-root biomass of Norway spruce stands

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

The applicability of a heuristic model for estimating mean fine-root biomass of Norway spruce stands based on the coordinates and the diameters at breast height (diameter at a height of 1.3 m, dbh) of their trees was tested. The model was developed based on the following assumptions which were derived from the literature: (1) the maximum distance the roots of a tree can be found depends on the dimension of the tree and exceeds the edges of the crown; (2) fine-root biomass decreases with increasing distance from the tree trunk; (3) fine-root biomass increases with the dbh; (4) maximum fine-root biomass of a tree is not allocated directly around the tree’s trunk but at some distance from the stem. On the basis of these assumptions the model calculates a relative fine-root biomass at a given point within a stand. Four different versions of the model were compared, with each version differing with respect to the assumed decrease in fine roots with decreasing dbh and the approaches used to calculate the contribution of a subject tree to the fine-root biomass at a given point within a stand (additive versus consumptive). Using regression analysis we parameterised each model type with the data of 70 soil cores from a 75-year-old Norway spruce stand in southern Germany (Bavaria). The relative fine-root biomass calculated by the four different model types accounted for 62–72% of the variation of the measured fine-root biomass. The parameterised models were used to predict the fine-root biomass of 60 given points of a second Norway spruce stand based on its dbhs and stem coordinates. The comparison of measured and predicted mean fine-root biomasses of the second stand revealed no significant differences between the measured mean and the means estimated by three of the four model types. Whereas with two of the model types we achieved means and medians, respectively, nearly identical to the measured average, none of the model types was able to predict values as high as the measured maximum. Constraints of the models and points that need to be considered regarding the minimum number of soil cores needed for a reliable parameterisation of the model are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ammer Ch (2000) Untersuchungen zum Einfluss von Fichtenaltbeständen auf die Entwicklung junger Buchen. Shaker, Aachen

    Google Scholar 

  • Ammer Ch (2002a) Response of Fagus sylvatica seedlings to root trenching of overstorey Picea abies. Scan J For Res 17:408–416

    Article  Google Scholar 

  • Ammer Ch (2002b) (ed) Altholzwurzelkonkurrenz—eine Herausforderung für die Verjüngungsmodellierung. In: Proc Sekt Waldbau Verbandes Dtsch Forstlicher Forschungsanst. Berliner Forsten, Berlin, pp 72–84

  • Ammer Ch, Wagner S (2002) Problems and options in modelling fine root biomass of single mature Norway spruce trees at given points from stand data. Can J For Res 32:581–590

    Article  Google Scholar 

  • Ammer Ch, Mosandl R, El Kateb H (2002) Direct seeding of beech (Fagus sylvatica L.) in Norway spruce (Picea abies [L.] Karst.) stands—effects of canopy density and fine rot biomass on seed germination. For Ecol Manage 159:59–72

    Article  Google Scholar 

  • Aussenac G (2000) Interactions between forest stands and microclimate: ecophysiological aspects and consequences for silviculture. Ann For Sci 57:287–301

    Article  Google Scholar 

  • Bauhus J, Bartsch N (1996) Fine-root growth in beech (Fagus sylvatica) forest gaps. Can J For Res 26:2153–2159

    Google Scholar 

  • Björse G, Bradshaw R (1998) 2000 years of forest dynamics in southern Sweden: suggestions for forest management. For Ecol Manage 104:15–26

    Google Scholar 

  • Böhm W (1979) Methods of studying root systems. Ecological studies, vol 33. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Böswald K (1996) Zur Bedeutung des Waldes und der Forstwirtschaft im Kohlenstoffhaushalt, eine Analyse am Beispiel des Bundeslandes Bayern. Forstl Forschungsber München 159

  • Bolte A, Hertel D, Ammer Ch, Schmid I, Nörr R, Kuhr M, Redde N (2003) Freilandmethoden zur Untersuchung von Baumwurzeln. Forstarchiv 74:240–262

    Google Scholar 

  • Brockway DG, Outcalt KW (1998) Gap-phase regeneration in longleaf pine wiregrass ecoystems. For Ecol Manage 106:125–139

    Article  Google Scholar 

  • Burke MK, Raynal DJ (1994) Fine root growth phenology, production, and turnover in a northern hardwood forest ecosystem. Plant Soil 162:135–146

    CAS  Google Scholar 

  • Burschel P, Weber M (2001) Wald-Forstwirtschaft-Holzindustrie: zentrale Grössen der Klimapolitik. Forstarchiv 72:75–85

    Google Scholar 

  • Campbell JJ, Finér L, Messier C (1998) Fine-root production in small experimental gaps in successional mixed boreal forests. J Veg Sci 9:537–542

    Google Scholar 

  • Clemensson-Lindell A, Persson H (1995) The effects of nitrogen addition and removal on Norway spruce fine-root vitality and distribution in three catchment areas at Gårdsjön. For Ecol Manage 71:123–131

    Article  Google Scholar 

  • Collet C, Lanter O, Pardos (2002) Effects of canopy opening on the morphology and anatomy of naturally regenerated beech seedlings. Trees 16:291–298

    Article  Google Scholar 

  • Coomes DA, Grubb PJ (2000) Impacts of root competition in forests and woodlands: a theoretical framework and review of experiments. Ecol Monogr 70:171–207

    Google Scholar 

  • Drexhage M (1994) Die Wurzelentwicklung 40-jähriger Fichten (Picea abies [L.] Karst.) in der Langen Bramke (Harz). Ber Forschungszentrums Waldökosysteme A 111

  • Drexhage M, Colin F (2001) Estimating root system biomass from breast-height diameters. Forestry 74:491–497

    Google Scholar 

  • Drexhage M, Gruber F (1999) Above- and belowground relationships for Picea abies: estimating root sxstem biomass from breast-height diameters. Scan J For Res 14:328–333

    Google Scholar 

  • Dufner J, Jensen U, Schumacher E (1992) Statistik mit SAS. Teubner, Stuttgart

    Google Scholar 

  • Friedrich J (1992) Räumliche Variation bodenchemischer und -physikalischer Merkmalsgrössen sowie der Wurzelverteilung in Buchen- und Fichtenwaldökosystemen. Ber Forschungszentrums Waldökosysteme A 83

  • Gerhardt K (1996) Effects of root competition and canopy openness on survival and growth of tree seedlings in a tropical seasonal dry forest. For Ecol Manage 82:33–48

    Article  Google Scholar 

  • Helmisaari H-S, Hallbäcken L (1999) Fine-root biomass and necromass in limed and fertilized Norway spruce (Picea abies (L.) Karst.) stands. For Ecol Manage 119:99–110

    Article  Google Scholar 

  • Hilf HH (1927) Wurzelstudien an Waldbäumen. Die Wurzelausbreitung und ihre waldbauliche Bedeutung. Schaper, Hannover

    Google Scholar 

  • Irrgang S (1999) Kiefern-Waldumbauversuche der Sächsischen Landesanstalt für Forsten. Konzeption und bisherige Ergebnisse. Forst Holz 54:323–330

    Google Scholar 

  • Jones RH, Mitchell RJ, Stevens GN, Pecot SD (2003) Controls of fine root dynamics across a gradient of gap sizes in a pine woodland. Oecologia 134:132–143

    Article  PubMed  Google Scholar 

  • Kalela EK (1950) On the horizontal roots in pine and spruce stand I. Acta For Fenn 57:1–79

    Google Scholar 

  • Kenk GK (1992) Silviculture of mixed species stands in Germany. In: Cannell MGR, Malcolm DC, Robertson PA (eds) The ecology of mixed-species stands of trees. Special publication No. 11 of the British Ecological Society. Blackwell, Oxford, pp 53–63

    Google Scholar 

  • Kurz WA, Kimmins JP (1987) Analysis of some sources of error in methods used to determine fine root production in forest ecosystems: a simulation approach. Can J For Res 17:909–912

    Google Scholar 

  • Kurz WA, Beukema SJ, Apps MJ (1996) Estimation of root biomass and dynamics for the carbon budget model of the Canadian sector. Can J For Res 26:1973–1979

    Google Scholar 

  • Kuuluvainen T, Pukkala T (1989) Effect of Scots pine seed trees on the density of ground vegetation and tree seedlings. Silva Fenn 23:159–167

    Google Scholar 

  • Leder B, Hillebrand K (2001) Überlegungen zur Charakterisierung der Qualitätsentwicklung in Buchen-Jungwüchsen. Forst Holz 56:44–49

    Google Scholar 

  • Leder B, Wagner S (1996) Bucheckern/Streu-Voraussaat als Alternative beim Umbau von Nadelholzreinbeständen in Mischbestände. Forstarchiv 67:7–13

    Google Scholar 

  • Leder B, Wagner S, Wollmerstädt J, Ammer Ch (2003) Bucheckern-Voraussaat unter Fichtenschirm—Ergebnisse eines Versuchs des Deutschen Verbandes Forstlicher Forschungsanstalten/Sektion Waldbau. Forstwiss Centralbl 120:160–174

    Article  Google Scholar 

  • Le Goff N, Ottorini J-M (2001) Root biomass and biomass increment in a beech (Fagus sylvatica L.) stand in North-East France. Ann For Sci 58:1–13

    Article  Google Scholar 

  • Leuschner C, Backes K, Hertel D, Schipka F, Schmitt U, Terborg O, Runge M (2001) Draught responses at leaf, stem and fine root levels of competitive Fagus sylvatica L. and Quercus petraea (Matt.) Liebl. trees in dry and wet years. For Ecol Manage 149:33–46

    Article  Google Scholar 

  • López B, Sabaté S, Gracia CA (2001) Annual and seasonal changes in fine root biomass of a Quercus ilex L. forest. Plant Soil 230:125–134

    Article  Google Scholar 

  • Lüpke B von, Ammer Ch, Braciamacchie M, Brunner A, Ceitel J, Collet C, Deuleuze C, Di Placido J, Huss J, Jankovic J, Kantor P, Larsen JB, Lexer M, Löf M, Longauer R, Madsen P, Modrzynski J, Mosandl R, Pampe A, Pommerening A, Stefancik J, Tesar V, Thompson R, Zientarski J (2004) Silvicultural strategies for conversion. In: Spiecker H, Hansen J, Klimo E, Skovsgaard JP, Sterba H, Teuffel Kv (eds) Norway spruce conversion—options and consequences 18. Brill, Leiden, pp 121–164

    Google Scholar 

  • Mäkela A, Vanninen P (2000) Estimation of fine root mortality and growth from simple measurements: a method based on system dynamics. Trees 14:316–323

    Article  Google Scholar 

  • Makkonen K, Helmisaari H-S (1998) Seasonal and yearly variations of fine-root biomass and mecromass in a Scots pine (Pinus sylvestris L.) stand. For Ecol Manage 102:283–290

    Article  Google Scholar 

  • McClaugherty CA, Aber JD, Melillo JM (1982) The role of fine roots in the organic matter and nitrogen budgets of two forest ecosystems. Ecology 63:1481–1490

    Google Scholar 

  • Meyer FH (1967) Feinwurzelverteilung bei Altbäumen in Abhängigkeit vom Substrat. Forstarchiv 38:286–290

    Google Scholar 

  • Müller K, Wagner S (2003) Fine-root dynamics in gaps of Norway spruce stands in the Germany Ore mountains. Forestry 76:149–158

    Google Scholar 

  • Murach D (1984) Die Reaktion der Feinwurzeln von Fichten (Picea abies [L.] Karst. auf zunehmende Bodenversauerung. Göttinger Bodenkundl Ber 77:1–126

    Google Scholar 

  • Nadelhoffer KJ, Raich JW (1992) Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology 73:1139–1147

    Google Scholar 

  • Nadelhoffer KJ, Aber JD, Melillo JM (1985) Fine roots net primary production and soil nitrogen availability: a new hypothesis. Ecology 66:1377–1390

    Google Scholar 

  • Nielsen C Ch N, Mackenthun G (1991) Die horizontale Variation der Feinwurzelintensität in Waldböden in Abhängigkeit von der Bestockungsdichte. Eine rechnerische Methode zur Bestimmung der “Wurzelintensitätsglocke” an Einzelbäumen. Allg Forst Jagdg Ztg 162:112–119

    Google Scholar 

  • Parsons WFJ, Miller SL, Knight DH (1994) Root gaps dynamics in a lodgepole pine forest: ectomycorrhizal and nonmycorrhizal fine root activity after experimental gap formation. Can J For Res 24:1531–1538

    Google Scholar 

  • Persson H (1983) The distribution and productivity of fine roots in boreal forests. Plant Soil 71:87–101

    Google Scholar 

  • Persson H (1996) Fine-root dynamics in forest trees. Acta Phytogeogr Suec 81:17–23

    Google Scholar 

  • Polomski J, Kuhn N (1998) Wurzelsysteme. Haupt, Bern

    Google Scholar 

  • Puhe J (1994) Die Wurzelentwicklung der Fichte (Picea abies [L.] Karst. bei unterschiedlichen chemischen Bodenbedingungen. Ber Forschungszentrums Waldökosysteme A 108

  • Puhe J(2003) (2003) Growth and development of the root system of Norway spruce (Picea abies) in forest stands—a review. For Ecol Manage 175:253–273

    Article  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. University Press, Cambridge

    Google Scholar 

  • Rohner M, Böswald K (2001) Forestry development scenarios: timber production, carbon dynamics in tree biomass and forest values in Germany. Silva Fenn 35:277–297

    CAS  PubMed  Google Scholar 

  • Santantonio D, Grace J C (1987) Estimating fine-root production and turnover from biomass and decomposition data: a compartment-flow model. Can J For Res 17:900–908

    Google Scholar 

  • Santantonio D, Herrmann R K (1985) Standing crop production and turnover of fine roots on dry moderate and wet sites of mature Douglas-fir (Pseudotsuga menziesii) in Western Oregon USA. Ann Sci For 42:113–142

    Google Scholar 

  • Santantonio D, Herrmann RK, Overton WS (1977) Root biomass studies in forest ecosystems. Pedobiologia 17:1–31

    CAS  Google Scholar 

  • Schmid I, Kazda M (2002) Root distribution of Norway Spruce in monospecific and mixed stands on different soils. For Ecol Manage 159:37–47

    Article  Google Scholar 

  • Stöcker H (ed) (1995) Taschenbuch mathematischer Formeln und moderner Verfahren, 3rd edn. Harri Deutsch, Thun

  • Stone EL, Kalisz PJ (1991) On the maximum extent of tree roots. For Ecol Manage 46:59–102

    Article  Google Scholar 

  • Taskinen O, Ilvesniemi H, Kuuluvainen T, Leinonen K (2003) Response of fine roots to an experimental gap in a boreal Picea abies forest. Plant Soil 255:503–512

    Article  CAS  Google Scholar 

  • Vanninen P, Mäkela A (1999) Fine root biomass of Scots pine stands differing in age and soil fertility in southern Finland. Tree Physiol 19:823–830

    PubMed  Google Scholar 

  • Vater H (1927) Die Bewurzelung der Kiefer, Fichte und Buche. Tharandter Forstl Jahrb 78:65–85

    Google Scholar 

  • Vogt KA (1991) Carbon budgets of temperate forest ecosystems. Tree Physiol 9:69–86

    PubMed  Google Scholar 

  • Vogt KA, Vogt DJ, Palmiotto PA, Boon P, O’Hara J, Asbjornsen H (1996) Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil 187:159–219

    CAS  Google Scholar 

  • Wagner S (1999) Ökologische Untersuchungen zur Initialphase der Naturverjüngung in Eschen-Buchen-Mischbeständen. Schriften a d Forstlichen Fakultät d Universität Göttingen u d Niedersächsischen Forstlichen Versuchsanstalt 129. Sauerländers, Frankfurt

    Google Scholar 

  • Wiedemann E (1927) Der Wurzelbau älterer Waldbäume. Forstarchiv 3:229–233

    Article  CAS  PubMed  Google Scholar 

  • Wittkopf S (1995) Wurzelintensität im Fichten–Buchen–Mischbestand im Vergleich zum Reinbestand. Untersuchungen zur Wurzelintensität im Fichtenreinbestand, Buchenreinbestand und Mischbestand mittels Bohrkernmethode unter Berücksichtigung bodenchemischer Parameter. PhD thesis Ludwig-Maximilians-Universität München

  • Wu HI, Sharpe PJH, Walker J, Penrigde LK (1985) Ecological field theory: a spatial analysis of resource interference among plants. Ecol Model 29:215–243

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. and K. Schweiger and K. Thoroe for their assistance in the field and in the laboratory. We also thank D. Dunn for English corrections and we appreciate the comments from two anonymous reviewers that have improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. Ammer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ammer, C., Wagner, S. An approach for modelling the mean fine-root biomass of Norway spruce stands. Trees 19, 145–153 (2005). https://doi.org/10.1007/s00468-004-0373-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-004-0373-4

Keywords

Navigation