Skip to main content
Log in

Host defense within the urinary tract. I. Bacterial adhesion initiates an uroepithelial defense mechanism

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Uroepithelial defense has been suggested to contribute to the local host resistance against ascending urinary tract infection. The cellular mechanism, however, is not known. In this study, bacterial growth was measured under the direct and indirect influence of uroepithelial cells. To study if a specific ligand-receptor interaction is required for uroepithelial cell (UEC) activation, isogenic Escherichia coli mutants expressing either mannose-sensitive, mannose-resistant (p), or mannose resistant (s) pili were tested for their capacity to induce the UEC defense mechanism. The antibacterial effect of UEC was abolished either by performing coculture in chambers with a fluid-permeable membrane which separates UEC from bacteria or by inhibiting membrane contact using the antiadherence factor pentosane polysulfate. No difference between the various types of pili could be shown. All E. coli strains adherened comparably to the UEC and were subsequently suppressed in their growth. Even a “naked” mutant without expression of common pili showed a similar behavior. In conclusion, bacterial growth suppression depends on direct contact between the UEC and bacteria, but is independent of common pili expressed on E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnson JR (1991) Virulence factors in Escherichia coli urinary tract infection. Clin Microbiol Rev 4: 80–128

    PubMed  CAS  Google Scholar 

  2. Sandberg T, Kaiser B, Lidin-Janson G, Lincoln K, Orskov F, Orskov I, Stokland E, Svanborg-Eden C (1988) Virulence of Escherichia coli in relation to host factors in women with symptomatic urinary tract infection. J Clin Microbiol 26: 1471–1476

    PubMed  CAS  Google Scholar 

  3. Stull TL, LiPuma JJ (1991) Epidemiology and natural history of urinary tract infections in children. Med Clin North Am 75: 287–297

    PubMed  CAS  Google Scholar 

  4. Svanborg-Eden C, Gotschlich EC, Korhonen TK, Leffler H, Schoolnik G (1983) Aspects on structure and function of pili on uropathogenic Escherichia coli. Prog Allergy 33: 189–202

    PubMed  CAS  Google Scholar 

  5. Svanborg-Eden C, Man P de, Jodal U, Linder H, Lomberg H (1987) Host-parasite interaction in urinary tract infection. Pediatr Nephrol 4: 623–631

    Article  Google Scholar 

  6. Lynn WA, Golenbock DT (1992) Lipopolysaccharide antagonists. Immunol Today 13: 271–276

    Article  PubMed  CAS  Google Scholar 

  7. Moch T, Hoschützky H, Hacker J, Kröncke K-D, Jann K (1987) Isolation and characterization of the alpha-sialyl-beta-2,3-galactosyl-specific adhesion from fimbriated Escherichia coli. Proc Natl Acad Sci USA 84: 3462–3466

    Article  PubMed  CAS  Google Scholar 

  8. Svanborg-Eden C, Jodal U (1979) Attachment of Escherichia coli to urinary sediment epithelial cells from urinary tract infection-prone and healthy children. Infect Immun 26: 837–840

    PubMed  CAS  Google Scholar 

  9. Svanborg-Eden C, Hagberg L, Hanson LA, Hull S, Hull R, Jodal U, Leffler H, Lomberg H, Straube E (1983) Bacterial adherence — a pathogenic mechanism in urinary tract infections caused by Escherichia coli. Prog Allergy 33: 175–188

    PubMed  CAS  Google Scholar 

  10. Kröncke K-D, Orskov F, Jann B, Jann K (1990) Electron microscopic study of coexpression of adhesive protein capsules and polysaccharide capsules in Escherichia coli. Infect Immun 58: 2710–2714

    PubMed  Google Scholar 

  11. Robledo JA, Serrano A, Domingue GJ (1990) Outer membrane proteins of E. coli in the host-pathogen interaction in urinary tract infection. J Urol 2: 386–391

    Google Scholar 

  12. Leffler H, Svanborg-Eden C (1981) Glycolipid receptors for uropathogenic Escherichia coli on human erythrocytes and uroepithelial cells. Infect Immun 43: 920–929

    Google Scholar 

  13. Cox CE, Hinman F (1961) Experiments with induced bacteriuria, vesical emptying and bacterial growth on the mechanism of bladder defense to infection. J Urol 86: 739–743

    PubMed  CAS  Google Scholar 

  14. Mannhardt W, Schofer O, Schulte-Wissermann H (1986) Pathogenic factors in recurrent urinary tract infections and renal scar formation in children. Eur J Pediatr 145: 330–336

    Article  PubMed  CAS  Google Scholar 

  15. Parsons CL (1986) Pathogenesis of urinary tract infections. Bacterial adherence, bladder defense mechanisms. Urol Clin North Am 13: 563–567

    PubMed  CAS  Google Scholar 

  16. Parsons CL, Stauffer CW, Schmidt JD (1988) Reversible inactivation of bladder surface glycosaminoglycan antibacterial activity by protamine sulfate. Infect Immun 56: 1341–1343

    PubMed  CAS  Google Scholar 

  17. Ruggieri MR, Levin RM, Hanno PM, Witkowski BA, Gill HS, Steinhardt GF (1988) Defective antiadherence activity of bladder extracts from patients with recurrent urinary tract infection. J Urol 140: 157–159

    PubMed  CAS  Google Scholar 

  18. Schaeffer AJ (1988) Pathogenesis of recurrent urinary tract infection: use of understanding as therapy. Urology [Suppl] 32: 13–15

    Article  CAS  Google Scholar 

  19. Schaeffer AJ (1990) Modifiers of susceptibility to urinary tract infection. J Urol 143: 138

    PubMed  CAS  Google Scholar 

  20. Bollgren I, Winberg J (1976) The periurethral aerobic flora in girls highly susceptible to urinary tract infections. Acta Paediatr Scand 65: 81–87

    Article  PubMed  CAS  Google Scholar 

  21. Stamey TA, Mihara G (1976) Studies of introital colonization in women with recurrent urinary tract infection. VI. Analysis of segmented leukocytes in the vaginal vestibule in relation to enterobacterial colonization. J Urol 116: 72–73

    PubMed  CAS  Google Scholar 

  22. Schulte-Wissermann H, Mannhardt W, Scharz J, Zepp F, Bitter-Suermann D (1985) Comparison of the antibacterial effect of uroepithelial cells from healthy donors and children with asymptomatic bacteriuria. Eur J Pediatr 144: 230–233

    Article  PubMed  CAS  Google Scholar 

  23. Schofer O, Ludwig KH, Mannhardt W, Beetz R, Zepp F, Schulte-Wissermann H (1988) Antibacterial capacity of buccal epithelial cells from healthy donors and children with recurrent urinary tract infections. Eur J Pediatr 147: 229–232

    Article  PubMed  CAS  Google Scholar 

  24. Hacker J, Schmidt G, Hughes C, Knapp S, Marget M, Goebel W (1985) Cloning and characterization of genes involved in production of mannose-resistant, neuraminidase-susceptible (X) fimbriae from an uropathogenic 06:K15:H31 Escherichia coli strain. Infect Immun 2: 434–440

    Google Scholar 

  25. Martin X, Werness PG, Bergert JH, Smith LH (1984) Pentosane polysulphate as an inhibitor of calcium oxalate crystal growth. J Urol 132: 786–788

    PubMed  CAS  Google Scholar 

  26. Orskov I, Ference A, Orskov F (1980) Tamm Horsfall protein or uromucoid is the normal urinary slime that traps type I fimbriated Escherichia coli. Lancet I: 887

    Article  Google Scholar 

  27. Steadman R, Topley N, Jenner DE, Davies M, Williams JD (1988) Type 1 fimbriate Escherichia coli stimulates a unique pattern of degranulation by human polymorphonuclear leukocytes. Infect Immun 56: 815–822

    PubMed  CAS  Google Scholar 

  28. Lei M-G, Morrison DC (1988) Specific endotoxic lipopoly-saccharide-binding proteins on murine splenocyte. I. Detection of lipopolysaccharide-binding sites on splenocytes and splenocyte subpopulations. J Immunol 141: 996–1005

    PubMed  CAS  Google Scholar 

  29. Svanborg C, Agace W, Hedges S, Lindstedt R, Svensson ML (1994) Bacterial adherence and mucosal cytokine production. Ann NY Acad Sci 730: 162–181

    Article  PubMed  CAS  Google Scholar 

  30. Mannhardt W, Putzer M, Zepp F, Schulte-Wissermann H (1995) Host defense within the urinary tract. II. Cell-bacteria interaction activates the uroepithelial defense mechanism via signal transduction. Pediatr Nephrol (in press)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mannhardt, W., Becker, A., Putzer, M. et al. Host defense within the urinary tract. I. Bacterial adhesion initiates an uroepithelial defense mechanism. Pediatr Nephrol 10, 568–572 (1996). https://doi.org/10.1007/s004670050162

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004670050162

Key words

Navigation