Skip to main content

Advertisement

Log in

A step-by-step, multidisciplinary strategy to maximize the yield of genetic testing in pediatric patients with chronic kidney diseases

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

An Editorial Commentary to this article was published on 19 March 2024

Abstract

Background

The use of genetic testing in pediatric patients with chronic kidney diseases (CKD) has increased exponentially in the past few years, particularly with the emergence of novel sequencing techniques. However, the genetic yield remains unexpectedly low in nephrology, with an impact on diagnosis, prognosis and treatment. Moreover, the increasing diversity of genetic testing possibilities can be seen as an obstacle by clinicians, in the absence of a strong background in genetics. Here, we propose a step-by-step, multidisciplinary strategy for the diagnostic evaluation of pediatric patients with CKD, and appropriate genetic test selection to maximize the yield of genetic testing.

Methods

A total of 126 pediatric patients were enrolled in a retrospective file analysis. Genetic testing techniques used included phenotype-associated next-generation panel sequencing (N = 41), Sanger and SNaPshot sequencing (N = 3) and/or whole exome sequencing (N = 2).

Results

Overall genetic yield reached 63% and genetic testing significantly impacted patient management in 70%. The distribution of kidney diseases among patients was balanced and matched previously described pediatric cohorts in terms of glomerulopathies, tubulopathies and ciliopathies. Genetic analyses led to significant treatment modifications, kidney biopsy sparing and personalized nephroprotection, as well as tailored genetic counseling. Of note, the evaluation of Human Phenotype Ontology term accuracy in the cohort showed that causal mutations were precisely identified in 85% of the patients at most.

Conclusion

Here we suggest a step-by-step, multidisciplinary strategy to maximize the yield of genetic testing in pediatric patients with CKD. This approach optimizes patient care while avoiding unnecessary treatments or procedures.

Graphical Abstract

A higher resolution version of the Graphical abstract is available as Supplementary information

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are not publicly available due to European privacy laws (GDPR), but are available from the corresponding author on reasonable request.

References

  1. Chen J, Lin F, Zhai Y et al (2021) Diagnostic and clinical utility of genetic testing in children with kidney failure. Pediatr Nephrol 36:3653–3662. https://doi.org/10.1007/s00467-021-05141-5

    Article  PubMed  Google Scholar 

  2. Arora V, Anand K, Chander Verma I (2020) Genetic testing in pediatric kidney disease. Indian J Pediatr 87:706–715. https://doi.org/10.1007/s12098-020-03198-y

    Article  PubMed  Google Scholar 

  3. KDIGO Conference Participants (2022) Genetics in chronic kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int 101:1126–1141. https://doi.org/10.1016/j.kint.2022.03.019

    Article  CAS  PubMed Central  Google Scholar 

  4. Vivante A, Hildebrandt F (2016) Exploring the genetic basis of early-onset chronic kidney disease. Nat Rev Nephrol 12:133–146. https://doi.org/10.1038/nrneph.2015.205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gambaro G, Zaza G, Citterio F, Naticchia A, Ferraro PM (2019) Living kidney donation from people at risk of nephrolithiasis, with a focus on the genetic forms. Urolithiasis 47:115–123. https://doi.org/10.1007/s00240-018-1092-4

    Article  PubMed  Google Scholar 

  6. Pinto e Vairo F, Kemppainen JL, Lieske JC, Harris PC, Hogan MC (2021) Establishing a nephrology genetic clinic. Kidney Int 100:254–259. https://doi.org/10.1016/j.kint.2021.05.008

    Article  PubMed  Google Scholar 

  7. Alkanderi S, Yates LM, Johnson SA, Sayer JA (2017) Lessons learned from a multidisciplinary renal genetics clinic. QJM 110:453–457. https://doi.org/10.1093/qjmed/hcx030

    Article  CAS  PubMed  Google Scholar 

  8. Jayasinghe K, Quinlan C, Stark Z, Patel C, Mallawaarachchi A, Wardrop L, Kerr PG, Trnka P, Mallett AJ (2019) Renal genetics in Australia: kidney medicine in the genomic age. Nephrology 24:279–286. https://doi.org/10.1111/nep.13494

    Article  PubMed  Google Scholar 

  9. Jayasinghe K, Stark Z, Kerr PG, Gaff C, Martyn M, Whitlam J, Creighton B, Donaldson E, Hunter M, Jarmolowicz A, Johnstone L, Krzesinski E, Lunke S, Lynch E, Nicholls K, Patel C, Prawer Y, Ryan J, See EJ, Talbot A, Trainer A, Tytherleigh R, Valente G, Wallis M, Wardrop L, West KH, White SM, Wilkins E, Mallett AJ, Quinlan C (2021) Clinical impact of genomic testing in patients with suspected monogenic kidney disease. Genet Med 23:183–191. https://doi.org/10.1038/s41436-020-00963-4

    Article  PubMed  Google Scholar 

  10. Schrezenmeier E, Kremerskothen E, Halleck F, Staeck O, Liefeldt L, Choi M, Schüler M, Weber U, Bachmann N, Grohmann M, Wagner T, Budde K, Bergmann C (2021) The underestimated burden of monogenic kidney disease in adults waitlisted for kidney transplantation. Genet Med 23:1219–1224. https://doi.org/10.1038/s41436-021-01127-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Devarajan P, Chertow GM, Susztak K, Levin A, Agarwal R, Stenvinkel P, Chapman AB, Warady BA (2022) Emerging role of clinical genetics in CKD. Kidney Med 4:100435. https://doi.org/10.1016/j.xkme.2022.100435

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mantan M, Batra V (2020) Renal biopsy in children. Indian Pediatr 57:452–458. https://doi.org/10.1007/s13312-020-1821-y

    Article  PubMed  Google Scholar 

  13. Domingo-Gallego A, Pybus M, Bullich G, Furlano M, Ejarque-Vila L, Lorente-Grandoso L, Ruiz P, Fraga G, López González M, Piñero-Fernández JA, Rodríguez-Peña L, Llano-Rivas I, Sáez R, Bujons-Tur A, Ariceta G, Guirado L, Torra R, Ars E (2022) Clinical utility of genetic testing in early-onset kidney disease: seven genes are the main players. Nephrol Dial Transplant 37:687–696. https://doi.org/10.1093/ndt/gfab019

    Article  CAS  PubMed  Google Scholar 

  14. Thomas CP, Freese ME, Ounda A, Jetton JG, Holida M, Noureddine L, Smith RJ (2020) Initial experience from a renal genetics clinic demonstrates a distinct role in patient management. Genet Med 22:1025–1035. https://doi.org/10.1038/s41436-020-0772-y

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gross O, Netzer KO, Lambrecht R, Seibold S, Weber M (2002) Meta-analysis of genotype-phenotype correlation in X-linked Alport syndrome: impact on clinical counselling. Nephrol Dial Transplant 17:1218–1227. https://doi.org/10.1093/ndt/17.7.1218

    Article  PubMed  Google Scholar 

  16. Kashtan CE (2022) Genetic testing and glomerular hematuria - a nephrologist’s perspective. Am J Med Genet C Semin Med Genet 190:399–403. https://doi.org/10.1002/ajmg.c.31987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nevin SM, McLoone J, Wakefield CE, Kennedy SE, McCarthy HJ (2020) Genetic testing in the pediatric nephrology clinic: understanding families’ experiences. J Pediatr Genet 11:117–125. https://doi.org/10.1055/s-0040-1721439

    Article  PubMed  PubMed Central  Google Scholar 

  18. Knoers N, Antignac C, Bergmann C, Dahan K, Giglio S, Heidet L, Lipska-Ziętkiewicz BS, Noris M, Remuzzi G, Vargas-Poussou R, Schaefer F (2022) Genetic testing in the diagnosis of chronic kidney disease: recommendations for clinical practice. Nephrol Dial Transplant 37:239–254. https://doi.org/10.1093/ndt/gfab218

    Article  PubMed  Google Scholar 

  19. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL; ACMG Laboratory Quality Assurance Committee (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405–424. https://doi.org/10.1038/gim.2015.30

    Article  PubMed  PubMed Central  Google Scholar 

  20. Stevens PE, Levin A, Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members (2013) Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med 158:825–830. https://doi.org/10.7326/0003-4819-158-11-201306040-00007

    Article  Google Scholar 

  21. Flynn JT, Kaelber DC, Baker-Smith CM, Blowey D, Carroll AE, Daniels SR, de Ferranti SD, Dionne JM, Falkner B, Flinn SK, Gidding SS, Goodwin C, Leu MG, Powers ME, Rea C, Samuels J, Simasek M, Thaker VV, Urbina EM, Subcommittee on screening and management of high blood pressure in children (2017) Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics 140:e20171904. https://doi.org/10.1542/peds.2017-1904

    Article  PubMed  Google Scholar 

  22. Gao M, Yu F, Dong R, Zhang K, Lv Y, Ma J, Wang D, Zhang H, Gai Z, Liu Y (2023) Diagnostic application of exome sequencing in Chinese children with suspected inherited kidney diseases. Front Genet 13:933636. https://doi.org/10.3389/fgene.2022.933636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen TK, Knicely DH, Grams ME (2019) Chronic kidney disease diagnosis and management: a review. JAMA 322:1294–1304. https://doi.org/10.1001/jama.2019.14745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bassanese G, Wlodkowski T, Servais A, Heidet L, Roccatello D, Emma F, Levtchenko E, Ariceta G, Bacchetta J, Capasso G, Jankauskiene A, Miglinas M, Ferraro PM, Montini G, Oh J, Decramer S, Levart TK, Wetzels J, Cornelissen E, Devuyst O, Zurowska A, Pape L, Buescher A, Haffner D, Marcun Varda N, Ghiggeri GM, Remuzzi G, Konrad M, Longo G, Bockenhauer D, Awan A, Andersone I, Groothoff JW (2021) The European Rare Kidney Disease Registry (ERKReg): objectives, design and initial results. Orphanet J Rare Dis 16:251. https://doi.org/10.1186/s13023-021-01872-8

    Article  PubMed  PubMed Central  Google Scholar 

  25. Köhler S, Gargano M, Matentzoglu N, Carmody LC, Lewis-Smith D, Vasilevsky NA, Danis D, Balagura G, Baynam G, Brower AM, Callahan TJ, Chute CG, Est JL, Galer PD, Ganesan S, Griese M, Haimel M, Pazmandi J, Hanauer M, Harris NL, Hartnett MJ, Hastreiter M, Hauck F, He Y, Jeske T, Kearney H, Kindle G, Klein C, Knoflach K, Krause R, Lagorce D, McMurry JA, Miller JA, Munoz-Torres MC, Peters RL, Rapp CK, Rath AM, Rind SA, Rosenberg AZ, Segal MM, Seidel MG, Smedley D, Talmy T, Thomas Y, Wiafe SA, Xian J, Yüksel Z, Helbig I, Mungall CJ, Haendel MA, Robinson PN (2021) The human phenotype ontology in 2021. Nucleic Acids Res 49:D1207–D1217. https://doi.org/10.1093/nar/gkaa1043

    Article  CAS  PubMed  Google Scholar 

  26. Best S, Lord J, Roche M, Watson CM, Poulter JA, Bevers RPJ, Stuckey A, Szymanska K, Ellingford JM, Carmichael J, Brittain H, Toomes C, Inglehearn C, Johnson CA, Wheway G, Genomics England Research Consortium (2022) Molecular diagnoses in the congenital malformations caused by ciliopathies cohort of the 100,000 Genomes Project. J Med Genet 59:737–747. https://doi.org/10.1136/jmedgenet-2021-108065

    Article  CAS  PubMed  Google Scholar 

  27. Riedhammer KM, Ćomić J, Tasic V, Putnik J, Abazi-Emini N, Paripovic A, Stajic N, Meitinger T, Nushi-Stavileci V, Berutti R, Braunisch MC, Hoefele J (2023) Exome sequencing in individuals with congenital anomalies of the kidney and urinary tract (CAKUT): a single-center experience. Eur J Hum Genet 31:674–680. https://doi.org/10.1038/s41431-023-01331-x

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to drafting, reviewing, and revising this paper.

Corresponding author

Correspondence to Ancuta Caliment.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Consent to participate

Informed consent was obtained from legal guardians.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caliment, A., Van Reeth, O., Hougardy, C. et al. A step-by-step, multidisciplinary strategy to maximize the yield of genetic testing in pediatric patients with chronic kidney diseases. Pediatr Nephrol (2024). https://doi.org/10.1007/s00467-024-06299-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00467-024-06299-4

Keywords

Navigation