Skip to main content
Log in

Body composition and arterial stiffness in pediatric patients with chronic kidney disease

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

This study investigated the impact of body composition in the arterial stiffness of children with chronic kidney disease (CKD).

Methods

Fat mass (FM), fat tissue index (FTI), fat-free mass (FFM), fat-free tissue index (FFTI), and FFTI/FTI were measured in 26 patients and 25 healthy controls by bio-impedance analysis. Data on patient’s body mass index (BMI) for height-age, serum albumin, glomerular filtration rate (GFR), blood pressure status, and pulse wave velocity (PWV) were collected in patients.

Results

Patients presented lower levels of FM and FFM compared to healthy controls (p = 0.04 and p = 0.055 respectively). In patient group, BMI height-age z-score was positively correlated to FTI (r2 = 0.574, p < 0.001) and FFTI (r2 = 0.338, p = 0.001) and negatively correlated to FFTI/FTI (r2 = 0.263, p = 0.007). Serum albumin was positively correlated only with FFM among body composition data (r2 = 0.169, p = 0.037). PWV z-score was positively correlated to FFTI (r2 = 0.421, p = 0.006) and inversely correlated to FFTI/FTI ≥ 2.5 (r2 = 0.317, p = 0.003). Patients with FFTI/FTI ≥ 2.5 presented lower levels of PWV regardless the need for antihypertensive treatment. Serum albumin ≥ 3.8 mg/dl and FFTI/FTI ≥ 2.5 were independently associated with a lower risk for high PWV, after adjustment for age, sex, and GFR (OR 0.009, 95% CI 0.000–0.729 and OR 0.039, 95% CI 0.002–0.680). All underweight [2 (7.7%)] and overweight [4 (15.4%)] patients presented high PWV. Among normal weight patients, FFTI/FTI ratio ≥ 2.5 was significantly associated with lower PWV z-score (p = 0.013).

Conclusions

Both underweight and overweight are associated with arterial stiffness. Targeting FFTI/FTI ≥ 2.5 could be protective against cardiovascular disease in normal weight children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mitsnefes MM (2012) Cardiovascular disease in children with chronic kidney disease. J Am Soc Nephrol 23:578–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shroff R, Weaver DJ, Mitsnefes MM (2011) Cardiovascular complications in children with chronic kidney disease. Nat Rev Nephrol 7:642–649

    Article  CAS  PubMed  Google Scholar 

  3. Savant JD, Furth SL, Meyers KE (2014) Arterial stiffness in children: pediatric measurement and considerations. Pulse (Basel) 2:69–80

    Article  Google Scholar 

  4. Stabouli S, Papakatsika S, Kotronis G, Papadopoulou-Legbelou K, Rizos Z, Kotsi (2015) Arterial stiffness and SBP variability in children and adolescents. J Hypertens 33:88–95

    Article  CAS  PubMed  Google Scholar 

  5. Kotsis V, Antza C, Doundoulakis I, Stabouli S (2017) Markers of early vascular ageing. Curr Pharm Des 23:3200–3204

    Article  CAS  PubMed  Google Scholar 

  6. Patange AR, Valentini RP, Du W, Pettersen MD (2012) Vitamin D deficiency and arterial wall stiffness in children with chronic kidney disease. Pediatr Cardiol 33:122–128

    Article  PubMed  Google Scholar 

  7. Kis E, Cseprekál O, Bíró E, Kelen K, Ferenczi D, Kerti A, Szabó AJ, Szabó A, Reusz GS (2009) Effects of bone and mineral metabolism on arterial elasticity in chronic renal failure. Pediatr Nephrol 24:2413–2420

    Article  PubMed  Google Scholar 

  8. Shroff RC, Donald AE, Hiorns MP, Watson A, Feather S, Milford D, Ellins EA, Storry C, Ridout D, Deanfield J, Rees L (2007) Mineral metabolism and vascular damage in children on dialysis. J Am Soc Nephrol 18:2996–3003

    Article  CAS  PubMed  Google Scholar 

  9. Schmidt BMW, Sugianto RI, Thurn D, Azukaitis K, Bayazit AK, Canpolat N, Eroglu AG, Caliskan S, Doyon A, Duzova A, Karagoz T, Anarat A, Deveci M, Mir S, Ranchin B, Shroff R, Baskin E, Litwin M, Özcakar ZB, Büscher R, Soylemezoglu O, Dusek J, Kemper MJ, Matteucci MC, Habbig S, Laube G, Wühl E, Querfeld U, Sander A, Schaefer F, Melk A, 4C Study Consortium (2018) Early effects of renal replacement therapy on cardiovascular comorbidity in children with end-stage kidney disease. Transplantation 102:484–492

    PubMed  Google Scholar 

  10. Schaefer F, Doyon A, Azukaitis K, Bayazit A, Canpolat N, Duzova A, Niemirska A, Sözeri B, Thurn D, Anarat A, Ranchin B, Litwin M, Caliskan S, Candan C, Baskin E, Yilmaz E, Mir S, Kirchner M, Sander A, Haffner D, Melk A, Wühl E, Shroff R, Querfeld U, 4C Study Consortium (2017) Cardiovascular phenotypes in children with CKD: the 4C study. Clin J Am Soc Nephrol 12:19–28

    Article  PubMed  Google Scholar 

  11. Marcelli D, Usvyat LA, Kotanko P, Bayh I, Canaud B, Etter M, Gatti E, Grassmann A, Wang Y, Marelli C, Scatizzi L, Stopper A, van der Sande FM, Kooman J, MONitoring Dialysis Outcomes (MONDO) Consortium (2015) Body composition and survival in dialysis patients: results from an international cohort study. Clin J Am Soc Nephrol 10:1192–1200

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lin TY, Peng CH, Hung SC, Tarng DC (2018) Body composition is associated with clinical outcomes in patients with non–dialysis-dependent chronic kidney disease. Kidney Int 93:733–740

    Article  PubMed  Google Scholar 

  13. Beddhu S, Pappas LM, Ramkumar N, Samore M (2003) Effects of body size and body composition on survival in hemodialysis patients. J Am Soc Nephrol 14:2366–2372

    Article  PubMed  Google Scholar 

  14. Schwartz GJ, Muñoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH (2000) Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 320:1240–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Oliveira EA, Cheung WW, Toma KG, Mak RH (2018) Muscle wasting in chronic kidney disease. Pediatr Nephrol 33:789–798

    Article  PubMed  Google Scholar 

  17. Van Bortel LM, Laurent S, Boutouyrie P, Chowienczyk P, Cruickshank JK, De Backer T, Filipovsky J, Huybrechts S, Mattace-Raso FU, Protogerou AD, Schillaci G, Segers P, Vermeersch S, Weber T, Artery Society; European Society of Hypertension Working Group on Vascular Structure and Function; European Network for Noninvasive Investigation of Large Arteries (2012) Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hypertens 30:445–448

    Article  CAS  Google Scholar 

  18. Reusz GS, Cseprekal O, Temmar M, Kis E, Cherif AB, Thaleb A, Fekete A, Szabó AJ, Benetos A, Salvi P (2010) Reference values of pulse wave velocity in healthy children and teenagers. Hypertension 56:217–224

    Article  CAS  Google Scholar 

  19. Rees L, Jones H (2013) Nutritional management and growth in children with chronic kidney disease. Pediatr Nephrol 28:527–536

    Article  PubMed  Google Scholar 

  20. Mak RH, Cheung WW, Zhan JY, Shen Q, Foster BJ (2012) Cachexia and protein-energy wasting in children with chronic kidney disease. Pediatr Nephrol 27:173–181

    Article  PubMed  Google Scholar 

  21. Abraham AG, Mak RH, Mitsnefes M, White C, Moxey-Mims M, Warady B, Furth SL (2014) Protein energy wasting in children with chronic kidney disease. Pediatr Nephrol 29:1231–1238

    Article  PubMed  PubMed Central  Google Scholar 

  22. Foster BJ, Kalkwarf HJ, Shults J, Zemel BS, Wetzsteon RJ, Thayu M, Foerster DL, Leonard MB (2011) Association of chronic kidney disease with muscle deficits in children. J Am Soc Nephrol 22:377–386

    Article  PubMed  PubMed Central  Google Scholar 

  23. Apostolou A, Printza N, Karagiozoglou-Lampoudi T, Dotis J, Papachristou F (2014) Nutrition assessment of children with advanced stages of chronic kidney disease-a single center study. Hippokratia 18:212–216

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bonthuis M, van Stralen KJ, Verrina E, Groothoff JW, Alonso Melgar Á, Edefonti A, Fischbach M, Mendes P, Molchanova EA, Paripović D, Peco-Antic A, Printza N, Rees L, Rubik J, Stefanidis CJ, Sinha MD, Zagożdżon I, Jager KJ, Schaefer F (2013) Underweight, overweight and obesity in paediatric dialysis and renal transplant patients. Nephrol Dial Transplant 28:iv195–iv204

    Article  PubMed  Google Scholar 

  25. Miliku K, Bakker H, Dorresteijn EM, Cransberg K, Franco OH, Felix JF, Jaddoe VW (2017) Childhood estimates of glomerular filtration rate based on creatinine and cystatin C: importance of body composition. Am J Nephrol 45:320–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ayestaran FW, Schneider MF, Kaskel FJ, Srivaths PR, Seo-Mayer PW, Moxey-Mims M, Furth SL, Warady BA, Greenbaum LA (2016) Perceived appetite and clinical outcomes in children with chronic kidney disease. Pediatr Nephrol 31:1121–1127

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ku E, Glidden DV, Hsu CY, Portale AA, Grimes B, Johansen KL (2016) Association of body mass index with patient-centered outcomes in children with ESRD. J Am Soc Nephrol 27:551–558

    Article  CAS  PubMed  Google Scholar 

  28. Wong CS, Gipson DS, Gillen DL, Emerson S, Koepsell T, Sherrard DJ, Watkins SL, Stehman-Breen C (2000) Anthropometric measures and risk of death in children with end-stage renal disease. Am J Kidney Dis 36:811–819

    Article  CAS  PubMed  Google Scholar 

  29. Mastrangelo A, Paglialonga F, Edefonti A (2014) Assessment of nutritional status in children with chronic kidney disease and on dialysis. Pediatr Nephrol 29:1349–1358

    Article  PubMed  Google Scholar 

  30. Cochat P, Braillon P, Feber J, Hadj-Aïssa A, Dubourg L, Liponski I, Saïd MH, Glastre C, Meunier PJ, David L (1996) Body composition in children with renal disease: use of dual energy X-ray absorptiometry. Pediatr Nephrol 10:264–268

    Article  CAS  PubMed  Google Scholar 

  31. Gao T, Leonard MB, Zemel B, Kalkwarf HJ, Foster BJ (2012) Interpretation of body mass index in children with CKD. Clin J Am Soc Nephrol 7:558–564

    Article  PubMed  PubMed Central  Google Scholar 

  32. Weber DR, Leonard MB, Shults J, Zemel BS (2014) A comparison of fat and lean body mass index to BMI for the identification of metabolic syndrome in children and adolescents. J Clin Endocrinol Metab 99:3208–3216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bohn B, Müller MJ, Simic-Schleicher G, Kiess W, Siegfried W, Oelert M, Tuschy S, Berghem S, Holl RW, APV Initiative and the German BMBF Competence Network Obesity (2015) BMI or BIA: is body mass index or body fat mass a better predictor of cardiovascular risk in overweight or obese children and adolescents? A German/Austrian/Swiss multicenter APV analysis of 3,327 children and adolescents. Obes Facts 8:156–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lin TY, Lim PS, Hung SC (2018) Normal-weight obesity and clinical outcomes in nondiabetic chronic kidney disease patients: a cohort study. Am J Clin Nutr 107:664–672

    Article  PubMed  Google Scholar 

  35. Sgambat K, Roem J, Mitsnefes M, Portale AA, Furth S, Warady B, Moudgil A (2018) Waist-to-height ratio, body mass index, and cardiovascular risk profile in children with chronic kidney disease. Pediatr Nephrol. https://doi.org/10.1007/s00467-018-3987-2

  36. Fantuzzi G, Mazzone T (2007) Adipose tissue and atherosclerosis exploring the connection. Arterioscler Thromb Vasc Biol 27:996–1003

    Article  CAS  PubMed  Google Scholar 

  37. Hardy OT, Czech MP, Corvera S (2012) What causes the insulin resistance underlying obesity? Curr Opin Endocrinol Diabetes Obes 19:81–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Srikanthan P, Karlamangla AS (2011) Relative muscle mass is inversely associated with insulin resistance and prediabetes. Findings from the third National Health and Nutrition Examination Survey. J Clin Endocrinol Metab 96:2898–2903

    Article  CAS  PubMed  Google Scholar 

  39. Kim K, Park SM (2018) Association of muscle mass and fat mass with insulin resistance and the prevalence of metabolic syndrome in Korean adults: a cross-sectional study. Sci Rep 8:2703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Harada K, Suzuki S, Ishii H, Aoki T, Hirayama K, Shibata Y, Negishi Y, Sumi T, Kawashima K, Kunimura A, Shimbo Y, Tatami Y, Kawamiya T, Yamamoto D, Morimoto R, Yasuda Y, Murohara T (2017) Impact of skeletal muscle mass on long-term adverse cardiovascular outcomes in patients with chronic kidney disease. Am J Cardiol 119:1275–1280

    Article  PubMed  Google Scholar 

  41. Kahraman S, Yilmaz R, Akinci D, Arici M, Altun B, Erdem Y, Yasavul U, Turgan C (2005) U-shaped association of body mass index with inflammation and atherosclerosis in hemodialysis patients. J Ren Nutr 15:377–386

    Article  PubMed  Google Scholar 

  42. Canpolat N, Caliskan S, Sever L, Tasdemir M, Ekmekci OB, Pehlivan G, Shroff R (2013) Malnutrition and its association with inflammation and vascular disease in children on maintenance dialysis. Pediatr Nephrol 28:2149–2156

    Article  PubMed  Google Scholar 

  43. Amodu A, Abramowitz MK (2016) Effects of metabolic acidosis on skeletal muscle. In: Wesson D (ed) Metabolic acidosis: a guide to clinical assessment and management, 1st edn. Springer, New York, pp 101–110

    Chapter  Google Scholar 

  44. Mistretta A, Marventano S, Antoci M, Cagnetti A, Giogianni G, Nolfo F, Rametta S, Pecora G, Marranzano M (2017) Mediterranean diet adherence and body composition among Southern Italian adolescents. Obes Res Clin Pract 11:215–226

    Article  PubMed  Google Scholar 

  45. Chauveau P, Aparicio M, Bellizzi V, Campbell K, Hong X, Johansson L, Kolko A, Molina P, Sezer S, Wanner C, Ter Wee PM, Teta D, Fouque D, Carrero JJ, European Renal Nutrition (ERN) Working Group of the European Renal Association–European Dialysis Transplant Association (ERA-EDTA) (2018) Mediterranean diet as the diet of choice for patients with chronic kidney disease. Nephrol Dial Transplant 33:725–735

    Article  CAS  PubMed  Google Scholar 

  46. Roshanravan B, Gamboa J, Wilund K (2017) Exercise and CKD: skeletal muscle dysfunction and practical application of exercise to prevent and treat physical impairments in CKD. Am J Kidney Dis 69:837–852

    Article  PubMed  PubMed Central  Google Scholar 

  47. Molina P, Vizcaíno B, Molina MD, Beltrán S, González-Moya M, Mora A, Castro-Alonso C, Kanter J, Ávila AI, Górriz JL, Estañ N, Pallardó LM, Fouque D, Carrero JJ (2018) The effect of high-volume online haemodiafiltration on nutritional status and body composition: the ProtEin Stores prEservaTion (PESET) study. Nephrol Dial Transplant 33:1223–1235

    Article  CAS  PubMed  Google Scholar 

  48. Dasgupta I, Keane D, Lindley E, Shaheen I, Tyerman K, Schaefer F, Wühl E, Müller MJ, Bosy-Westphal A, Fors H, Dahlgren J, Chamney P, Wabel P, Moissl U (2018) Validating the use of bioimpedance spectroscopy for assessment of fluid status in children. Pediatr Nephrol 33:1601–1607

    Article  PubMed  PubMed Central  Google Scholar 

  49. Milani GP, Groothoff JW, Vianello FA, Fossali EF, Paglialonga F, Consolo S, Edefonti A, Consonni D, van Harskamp D, van Goudoever JB, Schierbeek H, Agostoni C, Oosterveld MJS (2018) Bioimpedance spectroscopy imprecisely assesses lean body mass in pediatric dialysis patients. J Pediatr Gastroenterol Nutr 67:533–537

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stella Stabouli.

Ethics declarations

This study was approved by the local Ethics Committee and was conducted in accordance with the 1964 Helsinki Declaration or comparable standards. Informed consent was obtained from the parents of all the participants.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karava, V., Printza, N., Dotis, J. et al. Body composition and arterial stiffness in pediatric patients with chronic kidney disease. Pediatr Nephrol 34, 1253–1260 (2019). https://doi.org/10.1007/s00467-019-04224-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-019-04224-8

Keywords

Navigation