Skip to main content

Advertisement

Log in

Pharmacogenetics of post-transplant diabetes mellitus in children with renal transplantation treated with tacrolimus

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Post-transplant diabetes mellitus (PTDM) is a major complication of immunosuppressive therapy, with many risk factors reported in adults with renal transplantation. The objective of this study was to investigate potential non-genetic and genetic risk factors of PTDM in children with renal transplantation treated with tacrolimus.

Methods

A national database was screened for patients developing PTDM within 4 years following tacrolimus introduction. PTDM was defined as glucose disorder requiring anti-diabetic treatment. PTDM patients were matched to “non-PTDM” control transplanted children according to age, gender, and duration of post-transplant follow-up. Patients were genotyped for six selected genetic variants in POR*28 (rs1057868), PPARa (rs4253728), CYP3A5 (rs776746), VDR (rs2228570 and rs731236), and ABCB1 (rs1045642) genes, implicated in glucose homeostasis and tacrolimus disposition.

Results

Among the 98 children with renal transplantation enrolled in this multicentre study, 18 developed PTDM. None of the clinical and biological parameters was significant between PTDM and control patients. Homozygous carriers of POR*28 or wild-type ABCB1 (rs1045642) gene variants were more frequent in PTDM than in control patients with differences close to significance (p = 0.114 and p = 0.066 respectively). A genetic score based on these variants demonstrated that POR*28/*28 and ABCB1 CC or CT genotype carriers were at a significantly higher risk of developing PTDM after renal transplantation.

Conclusion

Identification of PTDM risk factors should allow clinicians to allocate the best immunosuppressant for each patient with renal transplantation, and improve care for patients who are at a higher risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tonelli M, Wiebe N, Knoll G, Bello A, Browne S, Jadhav D, Klarenbach S, Gill J (2011) Systematic review: kidney transplantation compared with dialysis in clinically relevant outcomes. Am J Transplant 11:2093–2109

    Article  CAS  PubMed  Google Scholar 

  2. Assadi F (2013) Pediatric kidney transplantation: kids are different. Iran J Kidney Dis 7:429–431

    PubMed  Google Scholar 

  3. Sharma A, Ramanathan R, Posner M, Fisher RA (2013) Pediatric kidney transplantation: a review. Transplantation 5:21–31

    CAS  Google Scholar 

  4. Jurewicz WA (2003) Tacrolimus versus cyclosporin immunosuppression: long-term outcome in renal transplantation. Nephrol Dial Transplant 18 [Suppl 1]:i7–11

    Article  PubMed  Google Scholar 

  5. Martins L, Ventura A, Branco A, Carvalho MJ, Henriques AC, Dias L, Sarmento AM, Amil M (2004) Cyclosporine versus tacrolimus in kidney transplantation: are there differences in nephrotoxicity? Transplant Proc 36:877–879

    Article  CAS  PubMed  Google Scholar 

  6. Kaufman DB, Shapiro R, Lucey MR, Cherikh WS, T Bustami R, Dyke DB (2004) Immunosuppression: practice and trends. Am J Transplant Suppl 9:38–53

    Article  Google Scholar 

  7. Rodriguez-Rodriguez AE, Triñanes J, Velazquez-Garcia S, Porrini E, Vega Prieto MJ, Diez Fuentes ML, Arevalo M, Salido Ruiz E (2013) The higher diabetogenic risk of tacrolimus depends on pre-existing insulin resistance. A study in obese and lean Zucker rats. Am J Transplant 13:1665–1675

    Article  CAS  PubMed  Google Scholar 

  8. Vincenti F, Friman S, Scheuermann E, Rostaing L, Jenssen T, Campistol JM, Uchida K, Pescovitz MD, Marchetti P, Tuncer M, Citterio F, Wiecek A, Chadban S, El-Shahawi M, Budde K, Goto N (2007) Results of an international, randomized trial comparing glucose metabolism disorders and outcome with cyclosporine versus tacrolimus. Am J Transplant 7:1506–1514

    Article  CAS  PubMed  Google Scholar 

  9. Webster A, Woodroffe RC, Taylor RS, Chapman JR, Craig JC (2005) Tacrolimus versus cyclosporin as primary immunosuppression for kidney transplant recipients. Cochrane Database Syst Rev 19:CD003961

    Google Scholar 

  10. Kasiske BL, Snyder JJ, Gilbertson D, Matas AJ (2003) Diabetes mellitus after kidney transplantation in the United States. Am J Transplant 3:178–185

    Article  PubMed  Google Scholar 

  11. Cosio FG, Pesavento TE, Kim S, Osei K, Henry M, Ferguson RM (2002) Patient survival after renal transplantation. IV. Impact of post-transplant diabetes. Kidney Int 62:1440–1446

    Article  PubMed  Google Scholar 

  12. Cosio FG, Kudva Y, van der Velde M, Larson TS, Textor SC, Griffin MD, Stegal MD (2005) New onset hyperglycemia and diabetes are associated with increased cardiovascular risk after kidney transplantation. Kidney Int 67:2415–2421

    Article  PubMed  Google Scholar 

  13. Al-Uzri A, Stablein DM, Cohn RA (2001) Posttransplant diabetes mellitus in pediatric renal transplant recipients: a report of the north American Pediatric renal transplant cooperative study (NAPRTCS). Transplantation 72:1020–1024

    Article  CAS  PubMed  Google Scholar 

  14. Prokai A, Fekete A, Kis E, Reusz GS, Sallay P, Korner A, Wagner L, Tulassay T, Szabo AJ (2008) Post-transplant diabetes mellitus in children following renal transplantation. Pediatr Transplant 12:643–649

    Article  CAS  PubMed  Google Scholar 

  15. Burroughs TE, Swindle JP, Salvalaggio PR, Lentine KL, Takemoto SK, Bunnapradist S, Brennan DC, Schnitzler MA (2009) Increasing incidence of new-onset diabetes after transplant among pediatric renal transplant patients. Transplantation 88:367–373

    Article  PubMed  PubMed Central  Google Scholar 

  16. Greenspan LC, Gitelman SE, Leung MA, Glidden DV, Mathias RS (2002) Increased incidence in post-transplant diabetes mellitus in children: a case-control analysis. Pediatr Nephrol 17:1–5

    Article  PubMed  Google Scholar 

  17. Sharif A, Baboolal K (2010) Risk factors for new-onset diabetes after kidney transplantation. Nat Rev Nephrol 6:415–423

    Article  PubMed  Google Scholar 

  18. Lancia P, Adam de Beaumais T, Jacqz-Aigrain E (2017) Pharmacogenetics of posttransplant diabetes mellitus. Pharm J 17:209–221

    CAS  Google Scholar 

  19. Sharif A, Hecking M, de Vries APJ, Porrini E, Hornum M, Rasoul-Rockenschaub S, Berlakovich G, Krebs M, Kautsky-Willer A, Schernthaner G, Marchetti P, Pacini G, Ojo A, Takahara S, Larsen JL, Budde K, Eller K, Pascual J, Jardine A, Bakker SJ, Valderhaug TG, Jenssen TG, Cohney S, Säemann MD (2014) Proceedings from an international consensus meeting on posttransplantation diabetes mellitus: recommendations and future directions. Am J Transplant 14:1992–2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cosio FG, Pesavento TE, Osei K, Henry ML, Ferguson RM (2001) Post-transplant diabetes mellitus: increasing incidence in renal allograft recipients transplanted in recent years. Kidney Int 59:732–737

    Article  CAS  PubMed  Google Scholar 

  21. Davidson J, Wilkinson A, Dantal J, Dotta F, Haller H, Hernandez D, Kasiske BL, Kiberd B, Krentz A, Legendre C, Marchetti P, Markell M, van der Woude FJ, Wheeler D (2003) Diabetes after transplantation: 2003 international consensus guidelines. Transplantation 75:SS3–SS24

    Article  PubMed  Google Scholar 

  22. Pham PT, Pham PM, Pham SV, Pham PA, Pham PC (2011) New onset diabetes after transplantation (NODAT): an overview. Diabetes Metab Syndr Obes 4:175–186

    Article  PubMed  PubMed Central  Google Scholar 

  23. Garro R, Warshaw B, Felner E (2015) New-onset diabetes after kidney transplant in children. Pediatr Nephrol 30:405–416

    Article  PubMed  Google Scholar 

  24. Hamer RA, Chow CL, Ong ACM, McKane WS (2007) Polycystic kidney disease is a risk factor for new-onset diabetes after transplantation. Transplantation 83:36–40

    Article  PubMed  Google Scholar 

  25. Nesmith JD, Ellis E (2007) Childhood hemolytic uremic syndrome is associated with adolescent-onset diabetes mellitus. Pediatr Nephrol 22:294–297

    Article  PubMed  Google Scholar 

  26. Suri RS, Clark WF, Barrowman N, Mahon JL, Thiessen-Philbrook HR, Rosas-Arellano MP, Zarnke K, Garland JS, Garg AX (2005) Diabetes during diarrhea-associated hemolytic uremic syndrome: a systematic review and meta-analysis. Diabetes Care 28:2556–2562

    Article  PubMed  Google Scholar 

  27. Tobin JL, Beales PL (2007) Bardet-Biedl syndrome: beyond the cilium. Pediatr Nephrol 22:926–936

    Article  PubMed  Google Scholar 

  28. Sam WJ, Aw M, Quak SH, Lim SM, Charles BG, Chan SY, Ho PC (2000) Population pharmacokinetics of tacrolimus in Asian paediatric liver transplant patients. Br J Clin Pharmacol 50:531–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shishido S, Asanuma H, Tajima E, Honda M, Nakai H (2001) Pharmacokinetics of tacrolimus in pediatric renal transplant recipients. Transplant Proc 33:1066–1068

    Article  CAS  PubMed  Google Scholar 

  30. Luan FL, Steffick DE, Ojo AO (2011) New-onset diabetes mellitus in kidney transplant recipients discharged on steroid-free immunosuppression. Transplantation 91:334–341

    Article  CAS  PubMed  Google Scholar 

  31. Boots JMM, Christiaans MHL, Van Duijnhoven EM, Van Suylen R-J, Van Hooff JP (2002) Early steroid withdrawal in renal transplantation with tacrolimus dual therapy: a pilot study. Transplantation 74:1703–1709

    Article  CAS  PubMed  Google Scholar 

  32. Grenda R (2010) Effects of steroid avoidance and novel protocols on growth in paediatric renal transplant patients. Pediatr Nephrol 25:747–752

    Article  PubMed  Google Scholar 

  33. Sarwal MM, Vidhun JR, Alexander SR, Satterwhite T, Millan M, Salvatierra O (2003) Continued superior outcomes with modification and lengthened follow-up of a steroid-avoidance pilot with extended daclizumab induction in pediatric renal transplantation. Transplantation 76:1331–1339

    Article  CAS  PubMed  Google Scholar 

  34. Boots JMM, van Duijnhoven EM, Christiaans MHL, Wolffenbuttel BHR, van Hooff JP (2002) Glucose metabolism in renal transplant recipients on tacrolimus: the effect of steroid withdrawal and tacrolimus trough level reduction. J Am Soc Nephrol 13:221–227

    CAS  PubMed  Google Scholar 

  35. Filler G, Neuschulz I, Vollmer I, Amendt P, Hocher B (2000) Tacrolimus reversibly reduces insulin secretion in paediatric renal transplant recipients. Nephrol Dial Transplant 15:867–871

    Article  CAS  PubMed  Google Scholar 

  36. Rathi M, Rajkumar V, Rao N, Sharma A, Kumar S, Ramachandran R, Kumar V, Kohli HS, Gupta KL, Sakhuja V (2015) Conversion from tacrolimus to cyclosporine in patients with new-onset diabetes after renal transplant: an open-label randomized prospective pilot study. Transplant Proc 47:1158–1161

    Article  CAS  PubMed  Google Scholar 

  37. Lorho R, Hardwigsen J, Dumortier J, Pageaux GP, Durand F, Bizollon T, Blanc AS, Di Giambattista F, Duvoux C (2011) Regression of new-onset diabetes mellitus after conversion from tacrolimus to cyclosporine in liver transplant patients: results of a pilot study. Clin Res Hepatol Gastroenterol 35:482–488

    Article  CAS  PubMed  Google Scholar 

  38. Van Duijnhoven EM, Christiaans MH, Boots JM, Nieman FH, Wolffenbutel BH, van Hooff JP (2002) Glucose metabolism in the first 3 years after renal transplantation in patients receiving tacrolimus versus cyclosporine-based immunosuppression. J Am Soc Nephrol 13:213–220

    PubMed  Google Scholar 

  39. Tarnowski M, Słuczanowska-Głabowska S, Pawlik A, Mazurek-Mochol M, Dembowska E (2017) Genetic factors in pathogenesis of diabetes mellitus after kidney transplantation. Ther Clin Risk Manag 13:439–446

    Article  PubMed  PubMed Central  Google Scholar 

  40. De Jonge H, Metalidis C, Naesens M, Lambrechts D, Kuypers DRJ (2011) The P450 oxidoreductase *28 SNP is associated with low initial tacrolimus exposure and increased dose requirements in CYP3A5-expressing renal recipients. Pharmacogenomics 12:1281–1291

    Article  PubMed  Google Scholar 

  41. Lunde I, Bremer S, Midtvedt K, Mohebi B, Dahl M, Bergan S, Asberg A, Christensen H (2014) The influence of CYP3A, PPARA, and POR genetic variants on the pharmacokinetics of tacrolimus and cyclosporine in renal transplant recipients. Eur J Clin Pharmacol 70:685–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Klein K, Thomas M, Winter S, Nussler AK, Niemi M, Schwab M, Zanger UM (2012) PPARA: a novel genetic determinant of CYP3A4 in vitro and in vivo. Clin Pharmacol Ther 91:1044–1052

    Article  CAS  PubMed  Google Scholar 

  43. Chiu KC, Chu A, Go VLW, Saad MF (2004) Hypovitaminosis D is associated with insulin resistance and beta cell dysfunction. Am J Clin Nutr 79:820–825

    Article  CAS  PubMed  Google Scholar 

  44. Wang Z, Schuetz EG, Xu Y, Thummel KE (2013) Interplay between vitamin D and the drug metabolizing enzyme CYP3A4. J Steroid Biochem Mol Biol 136:54–58

    Article  CAS  PubMed  Google Scholar 

  45. Lindh JD, Björkhem-Bergman L, Eliasson E (2012) Vitamin D and drug-metabolising enzymes. Photochem Photobiol Sci 11:1797–1801

    Article  CAS  PubMed  Google Scholar 

  46. Hubbard PA, Shen AL, Paschke R, Kasper CB, Kim JJ (2001) NADPH-cytochrome P450 oxidoreductase. Structural basis for hydride and electron transfer. J Biol Chem 276:29163–29170

    Article  CAS  PubMed  Google Scholar 

  47. Miller WL, Agrawal V, Sandee D, Tee MK, Huang N, Choi JH, Morissey K, Giacomini KM (2011) Consequences of POR mutations and polymorphisms. Mol Cell Endocrinol 336:174–179

    Article  CAS  PubMed  Google Scholar 

  48. Oneda B, Crettol S, Jaquenoud Sirot E, Bochud M, Ansermot N, Eap CB (2009) The P450 oxidoreductase genotype is associated with CYP3A activity in vivo as measured by the midazolam phenotyping test. Pharmacogenet Genomics 19:877–883

    Article  CAS  PubMed  Google Scholar 

  49. Huang N, Agrawal V, Giacomini KM, Miller WL (2008) Genetics of P450 oxidoreductase: sequence variation in 842 individuals of four ethnicities and activities of 15 missense mutations. Proc Natl Acad Sci 105:1733–1738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Marzolini C, Paus E, Buclin T, Kim RB (2004) Polymorphisms in human MDR1 (P-glycoprotein): recent advances and clinical relevance. Clin Pharmacol Ther 75:13–33

    Article  CAS  PubMed  Google Scholar 

  51. Hjelmesaeth J, Hartmann A, Kofstad J, Egeland T, Stenstrøm J, Fauchald P (2001) Tapering off prednisolone and cyclosporin the first year after renal transplantation: the effect on glucose tolerance. Nephrol Dial Transplant 16:829–835

    Article  CAS  PubMed  Google Scholar 

  52. Huang JW, Famure O, Li Y, Kim SJ (2016) Hypomagnesemia and the risk of new-onset diabetes mellitus after kidney transplantation. J Am Soc Nephrol 27:1793–1800

    Article  CAS  PubMed  Google Scholar 

  53. Hayes W, Boyle S, Carroll A, Bockenhauer D, Marks SD (2017) Hypomagnesemia and increased risk of new-onset diabetes mellitus after transplantation in pediatric renal transplant recipients. Pediatr Nephrol 32:879–884

    Article  PubMed  Google Scholar 

  54. Takaya J, Higashino H, Kobayashi Y (2004) Intracellular magnesium and insulin resistance. Magnes Res 17:126–136

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr MA Macher, Biomedicine Agency and Department of Paediatric Nephrology, Robert Debré Hospital, for her help in the study organisation, Yves Medard, Department of Paediatric Pharmacology and Pharmacogenetics, Robert Debré Hospital, for technical expertise in molecular biology and Professor M Tsimaratos, Department of Paediatric Nephrology, La Timone, Marseille, for his collaboration.

Funding

Funding was partially provided by the European Union Seventh Framework Programme FP7/2007–2013-Global Research in Paediatrics Network (grant no. 261060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evelyne Jacqz-Aigrain.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All procedures were carried out in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. The project fulfils the requirement of the “Commission Nationale Informatique et Liberté” (2014), and approval was obtained from the local Ethics Committee CEERB (2016/287). Informed consent was signed by the parents.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lancia, P., Adam de Beaumais, T., Elie, V. et al. Pharmacogenetics of post-transplant diabetes mellitus in children with renal transplantation treated with tacrolimus. Pediatr Nephrol 33, 1045–1055 (2018). https://doi.org/10.1007/s00467-017-3881-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-017-3881-3

Keywords

Navigation