Skip to main content

Advertisement

Log in

Whole exome sequencing: a state-of-the-art approach for defining (and exploring!) genetic landscapes in pediatric nephrology

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The genesis of whole exome sequencing as a powerful tool for detailing the protein coding sequence of the human genome was conceptualized based on the availability of next-generation sequencing technology and knowledge of the human reference genome. The field of pediatric nephrology enriched with molecularly unsolved phenotypes is allowing the clinical and research application of whole exome sequencing to enable novel gene discovery and provide amendment of phenotypic misclassification. Recent studies in the field have informed us that newer high-throughput sequencing techniques are likely to be of high yield when applied in conjunction with conventional genomic approaches such as linkage analysis and other strategies used to focus subsequent analysis. They have also emphasized the need for the validation of novel genetic findings in large collaborative cohorts and the production of robust corroborative biological data. The well-structured application of comprehensive genomic testing in clinical and research arenas will hopefully continue to advance patient care and precision medicine, but does call for attention to be paid to its integrated challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  CAS  PubMed  Google Scholar 

  2. Choi M, Scholl UI, Ji W, Liu T, Tikhonova IR, Zumbo P, Nayir A, Bakkaloğlu A, Ozen S, Sanjad S, Nelson-Williams C, Farhi A, Mane S, Lifton RP (2009) Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci U S A 106:19096–19101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, Shaffer T, Wong M, Bhattacharjee A, Eichler EE, Bamshad M, Nickerson DA, Shendure J (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461:272–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kim DW, Nam SH, Kim RN, Choi SH, Park HS (2010) Whole human exome capture for high-throughput sequencing. Genome 53:568–574

    Article  CAS  PubMed  Google Scholar 

  5. Albert TJ, Molla MN, Muzny DM, Nazareth L, Wheeler D, Song X, Richmond TA, Middle CM, Rodesch MJ, Packard CJ, Weinstock GM, Gibbs RA (2007) Direct selection of human genomic loci by microarray hybridization. Nat Methods 4:903–905

    Article  CAS  PubMed  Google Scholar 

  6. Saunders EJ, Dadaev T, Leongamornlert DA et al (2014) Fine-mapping the HOXB region detects common variants tagging a rare coding allele: evidence for synthetic Association in Prostate Cancer. PLoS Genet 10(2):e1004129

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chen R, Im H, Snyder M (2015) Whole-exome enrichment with the Agilent SureSelect /Illumina/Roche All Exon Platform. Cold Spring Harb Protoc (7) pdb.prot083659

  8. Rykalina VN, Shadrin AA, Amstislavskiy VS, Rogaev EI, Lehrach H, Borodina TA (2014) Exome sequencing from nanogram amounts of starting DNA: comparing three approaches. PLoS One 9:e101154

    Article  PubMed  PubMed Central  Google Scholar 

  9. Said M, Cappiello C, Devaney JM, Podini D, Beres AL, Vukmanovic S, Rais-Bahrami K, Luban NC, Sandler AD, Tatari-Calderone Z (2014) Genomics in premature infants: a non-invasive strategy to obtain high-quality DNA. Sci Rep 4:4286

    Article  PubMed  PubMed Central  Google Scholar 

  10. Oh E, Choi Y-L, Kwon MJ, Kim RN, Kim YJ, Song JY, Jung KS, Shin YK (2015) Comparison of accuracy of whole-exome sequencing with formalin-fixed paraffin-embedded and fresh frozen tissue samples. PLoS One 10(12):e0144162

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shigemizu D, Momozawa Y, Abe T, Morizono T, Boroevich KA, Takata S, Ashikawa K, Kubo M, Tsunoda T (2015) Performance comparison of four commercial human whole-exome captures platforms. Sci Rep 5:12742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Walker JM (2013) Methods in molecular biology. In Shomron N (ed) Deep sequencing data analysis. Volume 1038; Chapter 1. Humana Press. doi:10.1007/978-1-62703-514-9

  13. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a map reduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang H, Wang K (2015) Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR. Nat Protoc 10:1556–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8(3):186–194

    Article  CAS  PubMed  Google Scholar 

  17. Fu W, O’Connor TD, Jun G, Kang HM, Abecasis G, Leal SM, Gabriel S, Rieder MJ, Altshuler D, Shendure J, Nickerson DA, Bamshad MJ, NHLBI Exome Sequencing Project, Akey JM (2013) Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants. Nature 493:216–220

    Article  CAS  PubMed  Google Scholar 

  18. Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA, Abecasis GR (2015) A global reference for human genetic variation. Nature 526:68–74

    Article  Google Scholar 

  19. Lek M, Karczewski KJ, Minikel EV et al (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li Y, Vinckenbosch N, Tian G, Huerta-Sanchez E, Jiang T, Jiang H, Albrechtsen A, Andersen G, Cao H, Korneliussen T, Grarup N, Guo Y, Hellman I, Jin X, Li Q, Liu J, Liu X, Sparsø T, Tang M, Wu H, Wu R, Yu C, Zheng H, Astrup A, Bolund L, Holmkvist J, Jørgensen T, Kristiansen K, Schmitz O, Schwartz TW, Zhang X, Li R, Yang H, Wang J, Hansen T, Pedersen O, Nielsen R, Wang J (2010) Resequencing of 200 human exomes identifies an excess of low-frequency non-synonymous coding variants. Nat Genet 42(11):969–972

    Article  CAS  PubMed  Google Scholar 

  21. LeBlanc MA, Penney LS, Gaston D, Shi Y, Aberg E, Nightingale M, Jiang H, Gillett RM, Fahiminiya S, Macgillivray C, Wood EP, Acott PD, Khan MN, Samuels ME, Majewski J, Orr A, McMaster CR, Bedard K (2013) A novel rearrangement of occludin causes brain calcification and renal dysfunction. Hum Genet 132(11):1223–1234

    Article  CAS  PubMed  Google Scholar 

  22. Hildebrandt F, Benzing T, Katsanis N (2011) Ciliopathies. N Engl J Med 364:1533–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Otto EA, Hurd TW, Airik R, Chaki M, Zhou W, Stoetzel C, Patil SB, Levy S, Ghosh AK, Murga-Zamalloa CA, van Reeuwijk J, Letteboer SJ, Sang L, Giles RH, Liu Q, Coene KL, Estrada-Cuzcano A, Collin RW, McLaughlin HM, Held S, Kasanuki JM, Ramaswami G, Conte J, Lopez I, Washburn J, Macdonald J, Hu J, Yamashita Y, Maher ER, Guay-Woodford LM, Neumann HP, Obermüller N, Koenekoop RK, Bergmann C, Bei X, Lewis RA, Katsanis N, Lopes V, Williams DS, Lyons RH, Dang CV, Brito DA, Dias MB, Zhang X, Cavalcoli JD, Nürnberg G, Nürnberg P, Pierce EA, Jackson PK, Antignac C, Saunier S, Roepman R, Dollfus H, Khanna H, Hildebrandt F (2010) Candidate exome capture identifies mutation of SDCCAG8 as the cause of a retinal-renal ciliopathy. Nat Genet 42(10):840–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bredrup C, Saunier S, Oud MM, Fiskerstrand T, Hoischen A, Brackman D, Leh SM, Midtbø M, Filhol E, Bole-Feysot C, Nitschké P, Gilissen C, Haugen OH, Sanders JS, Stolte-Dijkstra I, Mans DA, Steenbergen EJ, Hamel BC, Matignon M, Pfundt R, Jeanpierre C, Boman H, Rødahl E, Veltman JA, Knappskog PM, Knoers NV, Roepman R, Arts HH (2011) Ciliopathies with skeletal anomalies and renal insufficiency due to mutations in the IFT-A gene WDR19. Am J Hum Genet 89(5):634–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chaki M, Airik R, Ghosh AK et al (2012) Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling. Cell 150(3):533–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shaheen R, Ansari S, Mardawi EA, Alshammari MJ, Alkuraya FS (2013) Mutations in TMEM231 cause Meckel-Gruber syndrome. J Med Genet 50(3):160–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shaheen R, Faqeih E, Alshammari MJ, Swaid A, Al-Gazali L, Mardawi E, Ansari S, Sogaty S, Seidahmed MZ, AlMotairi MI, Farra C, Kurdi W, Al-Rasheed S, Alkuraya FS (2013) Genomic analysis of Meckel-Gruber syndrome in Arabs reveals marked genetic heterogeneity and novel candidate genes. Eur J Hum Genet 21(7):762–768

    Article  CAS  PubMed  Google Scholar 

  28. Scheidecker S, Etard C, Pierce NW, Geoffroy V, Schaefer E, Muller J, Chennen K, Flori E, Pelletier V, Poch O, Marion V, Stoetzel C, Strähle U, Nachury MV, Dollfus H (2014) Exome sequencing of Bardet-Biedl syndrome patient identifies a null mutation in the BBSome subunit BBIP1 (BBS18). J Med Genet 51(2):132–136

    Article  PubMed  Google Scholar 

  29. Schueler M, Braun DA, Chandrasekar G, Gee HY, Klasson TD, Halbritter J, Bieder A, Porath JD, Airik R, Zhou W, LoTurco JJ, Che A, Otto EA, Böckenhauer D, Sebire NJ, Honzik T, Harris PC, Koon SJ, Gunay-Aygun M, Saunier S, Zerres K, Bruechle NO, Drenth JP, Pelletier L, Tapia-Páez LRP, Giles RH, Kere J, Hildebrandt F (2015) DCDC2 mutations cause a renal-hepatic ciliopathy by disrupting Wnt signaling. Am J Hum Genet 96(1):81–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hurd TW, Otto EA, Mishima E, Gee HY, Inoue H, Inazu M, Yamada H, Halbritter J, Seki G, Konishi M, Zhou W, Yamane T, Murakami S, Caridi G, Ghiggeri G, Abe T, Hildebrandt F (2013) Mutation of the Mg2+ transporter SLC41A1 results in a nephronophthisis-like phenotype. J Am Soc Nephrol 24(6):967–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gee HY, Otto EA, Hurd TW, Ashraf S, Chaki M, Cluckey A, Vega-Warner V, Saisawat P, Diaz KA, Fang H, Kohl S, Allen SJ, Airik R, Zhou W, Ramaswami G, Janssen S, Fu C, Innis JL, Weber S, Vester U, Davis EE, Katsanis N, Fathy HM, Jeck N, Klaus G, Nayir A, Rahim KA, Al Attrach I, Al Hassoun I, Ozturk S, Drozdz D, Helmchen U, O’Toole JF, Attanasio M, Lewis RA, Nürnberg G, Nürnberg P, Washburn J, MacDonald J, Innis JW, Levy S, Hildebrandt F (2014) Whole-exome resequencing distinguishes cystic kidney diseases from phenocopies in renal ciliopathies. Kidney Int 85(4):880–887

    Article  CAS  PubMed  Google Scholar 

  32. Zhou W, Otto EA, Cluckey A, Airik R, Hurd TW, Chaki M, Diaz K, Lach FP, Bennett GR, Gee HY, Ghosh AK, Natarajan S, Thongthip S, Veturi U, Allen SJ, Janssen S, Ramaswami G, Dixon J, Burkhalter F, Spoendlin M, Moch H, Mihatsch MJ, Verine J, Reade R, Soliman H, Godin M, Kiss D, Monga G, Mazzucco G, Amann K, Artunc F, Newland RC, Wiech T, Zschiedrich S, Huber TB, Friedl A, Slaats GG, Joles JA, Goldschmeding R, Washburn J, Giles RH, Levy S, Smogorzewska A, Hildebrandt F (2012) FAN1 mutations cause karyomegalic interstitial nephritis, linking chronic kidney failure to defective DNA damage repair. Nat Genet 44:910–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sadowski CE, Lovric S, Ashraf S, Pabst WL, Gee HY, Kohl S, Engelmann S, Vega-Warner V, Fang H, Halbritter J, Somers MJ, Tan W, Shril S, Fessi I, Lifton RP, Bockenhauer D, El-Desoky S, Kari JA, Zenker M, Kemper MJ, Mueller D, Fathy HM, Soliman NA, SRNS Study Group, Hildebrandt F (2015) A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. J Am Soc Nephrol 26(6):1279–1289

    Article  CAS  PubMed  Google Scholar 

  34. Malone AF, Phelan PJ, Hall G, Cetincelik U, Homstad A, Alonso AS, Jiang R, Lindsey TB, Wu G, Sparks MA, Smith SR, Webb NJ, Kalra PA, Adeyemo AA, Shaw AS, Conlon PJ, Jennette JC, Howell DN, Winn MP, Gbadegesin RA (2014) Rare hereditary COL4A3/COL4A4 variants may be mistaken for familial focal segmental glomerulosclerosis. Kidney Int 86(6):1253–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wuttke M, Seidl M, Malinoc A, Prischl FC, Kuehn EW, Walz G, Köttgen A (2015) A COL4A5 mutation with glomerular disease and signs of chronic thrombotic microangiopathy. Clin Kidney J 8(6):690–694

    Article  PubMed  PubMed Central  Google Scholar 

  36. Al-Romaih KI, Genovese G, Al-Mojalli H, Al-Othman S, Al-Manea H, Al-Suleiman M, Al-Jondubi M, Atallah N, Al-Rodayyan M, Weins A, Pollak MR, Adra CN (2011) Genetic diagnosis in consanguineous families with kidney disease by homozygosity mapping coupled with whole-exome sequencing. Am J Kidney Dis 58(2):186–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sanna-Cherchi S, Burgess KE, Nees SN, Caridi G, Weng PL, Dagnino M, Bodria M, Carrea A, Allegretta MA, Kim HR, Perry BJ, Gigante M, Clark LN, Kisselev S, Cusi D, Gesualdo L, Allegri L, Scolari F, D’Agati V, Shapiro LS, Pecoraro C, Palomero T, Ghiggeri GM, Gharavi AG (2011) Exome sequencing identified MYO1E and NEIL1 as candidate genes for human autosomal recessive steroid-resistant nephrotic syndrome. Kidney Int 80(4):389–396

    Article  CAS  PubMed  Google Scholar 

  38. Ashraf S, Gee HY, Woerner S, Xie LX, Vega-Warner V, Lovric S, Fang H, Song X, Cattran DC, Avila-Casado C, Paterson AD, Nitschké P, Bole-Feysot C, Cochat P, Esteve-Rudd J, Haberberger B, Allen SJ, Zhou W, Airik R, Otto EA, Barua M, Al-Hamed MH, Kari JA, Evans J, Bierzynska A, Saleem MA, Böckenhauer D, Kleta R, El Desoky S, Hacihamdioglu DO, Gok F, Washburn J, Wiggins RC, Choi M, Lifton RP, Levy S, Han Z, Salviati L, Prokisch H, Williams DS, Pollak M, Clarke CF, Pei Y, Antignac C, Hildebrandt F (2013) ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. J Clin Invest 123(12):5179–5189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gee HY, Saisawat P, Ashraf S, Hurd TW, Vega-Warner V, Fang H, Beck BB, Gribouval O, Zhou W, Diaz KA, Natarajan S, Wiggins RC, Lovric S, Chernin G, Schoeb DS, Ovunc B, Frishberg Y, Soliman NA, Fathy HM, Goebel H, Hoefele J, Weber LT, Innis JW, Faul C, Han Z, Washburn J, Antignac C, Levy S, Otto EA, Hildebrandt F (2013) ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling. J Clin Invest 123(8):3243–3253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gee HY, Zhang F, Ashraf S, Kohl S, Sadowski CE, Vega-Warner V, Zhou W, Lovric S, Fang H, Nettleton M, Zhu JY, Hoefele J, Weber LT, Podracka L, Boor A, Fehrenbach H, Innis JW, Washburn J, Levy S, Lifton RP, Otto EA, Han Z, Hildebrandt F (2015) KANK deficiency leads to podocyte dysfunction and nephrotic syndrome. J Clin Invest 125(6):2375–2384

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gee HY, Sadowski CE, Aggarwal PK, Porath JD, Yakulov TA, Schueler M, Lovric S, Ashraf S, Braun DA, Halbritter J, Fang H, Airik R, Vega-Warner V, Cho KJ, Chan TA, Morris LG, ffrench-Constant C, Allen N, McNeill H, Büscher R, Kyrieleis H, Wallot M, Gaspert A, Kistler T, Milford DV, Saleem MA, Keng WT, Alexander S, Valentini RP, Licht C, Teh JC, Bogdanovic R, Koziell A, Bierzynska A, Soliman NA, Otto EA, Lifton RP, Holzman LB, Sibinga NE, Walz G, Tufro A, Hildebrandt F (2016) FAT1 mutations cause a glomerulotubular nephropathy. Nat Commun 7:10822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gee HY, Ashraf S, Wan X, Vega-Warner V, Esteve-Rudd J, Lovric S, Fang H, Hurd TW, Sadowski CE, Allen SJ, Otto EA, Korkmaz E, Washburn J, Levy S, Williams DS, Bakkaloglu SA, Zolotnitskaya A, Ozaltin F, Zhou W, Hildebrandt F (2014) Mutations in EMP2 cause childhood-onset nephrotic syndrome. Am J Hum Genet 94(6):884–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ebarasi L, Ashraf S, Bierzynska A, Gee HY, McCarthy HJ, Lovric S, Sadowski CE, Pabst W, Vega-Warner V, Fang H, Koziell A, Simpson MA, Dursun I, Serdaroglu E, Levy S, Saleem MA, Hildebrandt F, Majumdar A (2015) Defects of CRB2 cause steroid-resistant nephrotic syndrome. Am J Hum Genet 96(1):153–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ovunc B, Otto EA, Vega-Warner V, Saisawat P, Ashraf S, Ramaswami G, Fathy HM, Schoeb D, Chernin G, Lyons RH, Yilmaz E, Hildebrandt F (2011) Exome sequencing reveals cubilin mutation as a single-gene cause of proteinuria. J Am Soc Nephrol 22(10):1815–1820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gbadegesin RA, Hall G, Adeyemo A, Hanke N, Tossidou I, Burchette J, Wu G, Homstad A, Sparks MA, Gomez J, Jiang R, Alonso A, Lavin P, Conlon P, Korstanje R, Stander MC, Shamsan G, Barua M, Spurney R, Singhal PC, Kopp JB, Haller H, Howell D, Pollak MR, Shaw AS, Schiffer M, Winn MP (2014) Mutations in the gene that encodes the F-actin binding protein anillin cause FSGS. J Am Soc Nephrol 25(9):1991–2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Barua M, Shieh E, Schlondorff J, Genovese G, Kaplan BS, Pollak MR (2014) Exome sequencing and in vitro studies identified podocalyxin as a candidate gene for focal and segmental glomerulosclerosis. Kidney Int 85(1):124–133

    Article  CAS  PubMed  Google Scholar 

  47. Esposito T, Lea RA, Maher BH, Moses D, Cox HC, Magliocca S, Angius A, Nyholt DR, Titus T, Kay T, Gray NA, Rastaldi MP, Parnham A, Gianfrancesco F, Griffiths LR (2013) Unique X-linked familial FSGS with co-segregating heart block disorder is associated with a mutation in the NXF5 gene. Hum Mol Genet 22(18):3654–3666

    Article  CAS  PubMed  Google Scholar 

  48. Boyer O, Woerner S, Yang F, Oakeley EJ, Linghu B, Gribouval O, Tête MJ, Duca JS, Klickstein L, Damask AJ, Szustakowski JD, Heibel F, Matignon M, Baudouin V, Chantrel F, Champigneulle J, Martin L, Nitschké P, Gubler MC, Johnson KJ, Chibout SD, Antignac C (2013) LMX1B mutations cause hereditary FSGS without extrarenal involvement. J Am Soc Nephrol 24(8):1216–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Barua M, Stellacci E, Stella L, Weins A, Genovese G, Muto V, Caputo V, Toka HR, Charoonratana VT, Tartaglia M, Pollak MR (2014) Mutations in PAX2 associate with adult-onset FSGS. J Am Soc Nephrol 25(9):1942–1953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hall G, Gbadegesin RA, Lavin P, Wu G, Liu Y, Oh EC, Wang L, Spurney RF, Eckel J, Lindsey T, Homstad A, Malone AF, Phelan PJ, Shaw A, Howell DN, Conlon PJ, Katsanis N, Winn MP (2015) A novel missense mutation of Wilms tumor 1 causes autosomal dominant FSGS. J Am Soc Nephrol 26(4):831–843

  51. Vieira-Martins P, El Sissy C, Bordereau P, Gruber A, Rosain J, Fremeaux-Bacchi V (2016) Defining the genetics of thrombotic microangiopathies. Transfus Apher Sci 54(2):212–219

    Article  PubMed  Google Scholar 

  52. Lemaire M, Frémeaux-Bacchi V, Schaefer F, Choi M, Tang WH, Le Quintrec M, Fakhouri F, Taque S, Nobili F, Martinez F, Ji W, Overton JD, Mane SM, Nürnberg G, Altmüller J, Thiele H, Morin D, Deschenes G, Baudouin V, Llanas B, Collard L, Majid MA, Simkova E, Nürnberg P, Rioux-Leclerc N, Moeckel GW, Gubler MC, Hwa J, Loirat C, Lifton RP (2013) Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nat Genet 45(5):531–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mele C, Lemaire M, Iatropoulos P, Piras R, Bresin E, Bettoni S, Bick D, Helbling D, Veith R, Valoti E, Donadelli R, Murer L, Neunhäuserer M, Breno M, Frémeaux-Bacchi V, Lifton R, Remuzzi G, Noris M (2015) Characterization of a new DGKE Intronic mutation in genetically unsolved cases of familial atypical hemolytic uremic syndrome. Clin J Am Soc Nephrol 10(6):1011–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ozaltin F, Li B, Rauhauser A, An SW, Soylemezoglu O, Gonul II, Taskiran EZ, Ibsirlioglu T, Korkmaz E, Bilginer Y, Duzova A, Ozen S, Topaloglu R, Besbas N, Ashraf S, Du Y, Liang C, Chen P, Lu D, Vadnagara K, Arbuckle S, Lewis D, Wakeland B, Quigg RJ, Ransom RF, Wakeland EK, Topham MK, Bazan NG, Mohan C, Hildebrandt F, Bakkaloglu A, Huang CL, Attanasio M (2013) DGKE variants cause a glomerular microangiopathy that mimics membranoproliferative GN. J Am Soc Nephrol 24(3):377–384

    Article  CAS  PubMed  Google Scholar 

  55. Westland R, Bodria M, Carrea A, Lata S, Scolari F, Fremeaux-Bacchi V, D’Agati VD, Lifton RP, Gharavi AG, Ghiggeri GM, Sanna-Cherchi S (2014) Phenotypic expansion of DGKE-associated diseases. J Am Soc Nephrol 25(7):1408–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yosypiv IV (2012) Congenital anomalies of the kidney and urinary tract: a genetic disorder? Int J Nephrol 2012:909083

    Article  PubMed  PubMed Central  Google Scholar 

  57. Thomas R, Sanna-Cherchi S, Warady BA, Furth SL, Kaskel FJ, Gharavi AG (2011) HNF1B and PAX2 mutations are a common cause of renal hypodysplasia in the CKiD cohort. Pediatr Nephrol 26(6):897–903

    Article  PubMed  PubMed Central  Google Scholar 

  58. Weber S, Moriniere V, Knüppel T, Charbit M, Dusek J, Ghiggeri GM, Jankauskiené A, Mir S, Montini G, Peco-Antic A, Wühl E, Zurowska AM, Mehls O, Antignac C, Schaefer F, Salomon R (2006) Prevalence of mutations in renal developmental genes in children with renal hypodysplasia: results of the ESCAPE study. J Am Soc Nephrol 17(10):2864–2870

    Article  CAS  PubMed  Google Scholar 

  59. Sanna-Cherchi S, Kiryluk K, Burgess KE, Bodria M, Sampson MG, Hadley D, Nees SN, Verbitsky M, Perry BJ, Sterken R, Lozanovski VJ, Materna-Kiryluk A, Barlassina C, Kini A, Corbani V, Carrea A, Somenzi D, Murtas C, Ristoska-Bojkovska N, Izzi C, Bianco B, Zaniew M, Flogelova H, Weng PL, Kacak N, Giberti S, Gigante M, Arapovic A, Drnasin K, Caridi G, Curioni S, Allegri F, Ammenti A, Ferretti S, Goj V, Bernardo L, Jobanputra V, Chung WK, Lifton RP, Sanders S, State M, Clark LN, Saraga M, Padmanabhan S, Dominiczak AF, Foroud T, Gesualdo L, Gucev Z, Allegri L, Latos-Bielenska A, Cusi D, Scolari F, Tasic V, Hakonarson H, Ghiggeri GM, Gharavi AG (2012) Copy-number disorders are a common cause of congenital kidney malformations. Am J Hum Genet 91:987–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sanna-Cherchi S, Sampogna RV, Papeta N, Burgess KE, Nees SN, Perry BJ, Choi M, Bodria M, Liu Y, Weng PL, Lozanovski VJ, Verbitsky M, Lugani F, Sterken R, Paragas N, Caridi G, Carrea A, Dagnino M, Materna-Kiryluk A, Santamaria G, Murtas C, Ristoska-Bojkovska N, Izzi C, Kacak N, Bianco B, Giberti S, Gigante M, Piaggio G, Gesualdo L, Kosuljandic Vukic D, Vukojevic K, Saraga-Babic M, Saraga M, Gucev Z, Allegri L, Latos-Bielenska A, Casu D, State M, Scolari F, Ravazzolo R, Kiryluk K, Al-Awqati Q, D’Agati VD, Drummond IA, Tasic V, Lifton RP, Ghiggeri GM, Gharavi AG (2013) Mutations in DSTYK and dominant urinary tract malformations. N Engl J Med 369(7):621–629

    Article  CAS  PubMed  Google Scholar 

  61. Gbadegesin RA, Brophy PD, Adeyemo A, Hall G, Gupta IR, Hains D, Bartkowiak B, Rabinovich CE, Chandrasekharappa S, Homstad A, Westreich K, Wu G, Liu Y, Holanda D, Clarke J, Lavin P, Selim A, Miller S, Wiener JS, Ross SS, Foreman J, Rotimi C, Winn MP (2013) TNXB mutations can cause vesicoureteral reflux. J Am Soc Nephrol 24(8):1313–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hwang DY, Kohl S, Fan X, Vivante A, Chan S, Dworschak GC, Schulz J, van Eerde AM, Hilger AC, Gee HY, Pennimpede T, Herrmann BG, van de Hoek G, Renkema KY, Schell C, Huber TB, Reutter HM, Soliman NA, Stajic N, Bogdanovic R, Kehinde EO, Lifton RP, Tasic V, Lu W, Hildebrandt F (2015) Mutations of the SLIT2-ROBO2 pathway genes SLIT2 and SRGAP1 confer risk for congenital anomalies of the kidney and urinary tract. Hum Genet 134(8):905–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lopez-Rivera E, Liu YP, Verbitsky M, Anderson BR, Capone VP, Otto EA, Yan Z, Mitrotti A, Martino J, Steers NJ, Fasel DA, Vukojevic K, Deng R, Racedo SE, Liu Q, Werth M, Westland R, Vivante A, Makar GS, Bodria M, Sampson MG, Gillies CE, Vega-Warner V, Maiorana M, Petrey DS, Honig B, Lozanovski VJ, Salomon R, Heidet L, Carpentier W, Gaillard D, Carrea A, Gesualdo L, Cusi D, Izzi C, Scolari F, van Wijk JA, Arapovic A, Saraga-Babic M, Saraga M, Kunac N, Samii A, McDonald-McGinn DM, Crowley TB, Zackai EH, Drozdz D, Miklaszewska M, Tkaczyk M, Sikora P, Szczepanska M, Mizerska-Wasiak M, Krzemien G, Szmigielska A, Zaniew M, Darlow JM, Puri P, Barton D, Casolari E, Furth SL, Warady BA, Gucev Z, Hakonarson H, Flogelova H, Tasic V, Latos-Bielenska A, Materna-Kiryluk A, Allegri L, Wong CS, Drummond IA, D’Agati V, Imamoto A, Barasch JM, Hildebrandt F, Kiryluk K, Lifton RP, Morrow BE, Jeanpierre C, Papaioannou VE, Ghiggeri GM, Gharavi AG, Katsanis N, Sanna-Cherchi S (2017) Genetic drivers of kidney defects in the DiGeorge syndrome. N Engl J Med 376(8):742–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Saisawat P, Kohl S, Hilger AC, Hwang DY, Yung Gee H, Dworschak GC, Tasic V, Pennimpede T, Natarajan S, Sperry E, Matassa DS, Stajić N, Bogdanovic R, de Blaauw I, Marcelis CL, Wijers CH, Bartels E, Schmiedeke E, Schmidt D, Märzheuser S, Grasshoff-Derr S, Holland-Cunz S, Ludwig M, Nöthen MM, Draaken M, Brosens E, Heij H, Tibboel D, Herrmann BG, Solomon BD, de Klein A, van Rooij IA, Esposito F (2014) Whole-exome resequencing reveals recessive mutations in TRAP1 in individuals with CAKUT and VACTERL association. Kidney Int 85(6):1310–1317

    Article  CAS  PubMed  Google Scholar 

  65. Humbert C, Silbermann F, Morar B, Parisot M, Zarhrate M, Masson C, Tores F, Blanchet P, Perez MJ, Petrov Y, Khau Van Kien P, Roume J, Leroy B, Gribouval O, Kalaydjieva L, Heidet L, Salomon R, Antignac C, Benmerah A, Saunier S, Jeanpierre C (2014) Integrin alpha 8 recessive mutations are responsible for bilateral renal agenesis in humans. Am J Hum Genet 94(2):288–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Barak H, Huh SH, Chen S, Jeanpierre C, Martinovic J, Parisot M, Bole-Feysot C, Nitschké P, Salomon R, Antignac C, Ornitz DM, Kopan R (2012) FGF9 and FGF20 maintain the stemness of nephron progenitors in mice and man. Dev Cell 22(6):1191–1207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kosfeld A, Kreuzer M, Daniel C, Brand F, Schäfer AK, Chadt A, Weiss AC, Riehmer V, Jeanpierre C, Klintschar M, Bräsen JH, Amann K, Pape L, Kispert A, Al-Hasani H, Haffner D, Weber RG (2016) Whole-exome sequencing identifies mutations of TBC1D1 encoding a Rab-GTPase-activating protein in patients with congenital anomalies of the kidneys and urinary tract (CAKUT). Hum Genet 135(1):69–87

    Article  CAS  PubMed  Google Scholar 

  68. Boyden LM, Choi M, Choate KA, Nelson-Williams CJ, Farhi A, Toka HR, Tikhonova IR, Bjornson R, Mane SM, Colussi G, Lebel M, Gordon RD, Semmekrot BA, Poujol A, Välimäki MJ, De Ferrari ME, Sanjad SA, Gutkin M, Karet FE, Tucci JR, Stockigt JR, Keppler-Noreuil KM, Porter CC, Anand SK, Whiteford ML, Davis ID, Dewar SB, Bettinelli A, Fadrowski JJ, Belsha CW, Hunley TE, Nelson RD, Trachtman H, Cole TR, Pinsk M, Bockenhauer D, Shenoy M, Vaidyanathan P, Foreman JW, Rasoulpour M, Thameem F, Al-Shahrouri HZ, Radhakrishnan J, Gharavi AG, Goilav B, Lifton RP (2012) Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature 482(7383):98–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Louis-Dit-Picard H, Barc J, Trujillano D, Miserey-Lenkei S, Bouatia-Naji N, Pylypenko O, Beaurain G, Bonnefond A, Sand O, Simian C, Vidal-Petiot E, Soukaseum C, Mandet C, Broux F, Chabre O, Delahousse M, Esnault V, Fiquet B, Houillier P, Bagnis CI, Koenig J, Konrad M, Landais P, Mourani C, Niaudet P, Probst V, Thauvin C, Unwin RJ, Soroka SD, Ehret G, Ossowski S, Caulfield M, International Consortium for Blood Pressure (ICBP), Bruneval P, Estivill X, Froguel P, Hadchouel J, Schott JJ, Jeunemaitre X (2012) KLHL3 mutations cause familial hyperkalemic hypertension by impairing ion transport in the distal nephron. Nat Genet 44(4):456–460. S1–3

    Article  CAS  PubMed  Google Scholar 

  70. Yu B, Pulit SL, Hwang SJ, Brody JA, Amin N, Auer PL, Bis JC, Boerwinkle E, Burke GL, Chakravarti A, Correa A, Dreisbach AW, Franco OH, Ehret GB, Franceschini N, Hofman A, Lin DY, Metcalf GA, Musani SK, Muzny D, Palmas W, Raffel L, Reiner A, Rice K, Rotter JI, Veeraraghavan N, Fox E, Guo X, North KE, Gibbs RA, van Duijn CM, Psaty BM, Levy D, Newton-Cheh C, Morrison AC, CHARGE Consortium and the National Heart, Lung, and Blood Institute GO ESP* (2016) Rare exome sequence variants in CLCN6 reduce blood pressure levels and hypertension risk. Circ Cardiovasc Genet 9(1):64–70

    Article  CAS  PubMed  Google Scholar 

  71. Cornec-Le Gall E, Audrézet MP, Le Meur Y, Chen JM, Férec C (2014) Genetics and pathogenesis of autosomal dominant polycystic kidney disease: 20 years on. Hum Mutat 35(12):1393–1406

    Article  PubMed  Google Scholar 

  72. Bergmann C, von Bothmer J, Ortiz Brüchle N, Venghaus A, Frank V, Fehrenbach H, Hampel T, Pape L, Buske A, Jonsson J, Sarioglu N, Santos A, Ferreira JC, Becker JU, Cremer R, Hoefele J, Benz MR, Weber LT, Buettner R, Zerres K (2011) Mutations in multiple PKD genes may explain early and severe polycystic kidney disease. J Am Soc Nephrol 22(11):2047–2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yang Y, Muzny DM, Xia F, Niu Z, Person R, Ding Y, Ward P, Braxton A, Wang M, Buhay C, Veeraraghavan N, Hawes A, Chiang T, Leduc M, Beuten J, Zhang J, He W, Scull J, Willis A, Landsverk M, Craigen WJ, Bekheirnia MR, Stray-Pedersen A, Liu P, Wen S, Alcaraz W, Cui H, Walkiewicz M, Reid J, Bainbridge M, Patel A, Boerwinkle E, Beaudet AL, Lupski JR, Plon SE, Gibbs RA, Eng CM (2014) Molecular findings among patients referred for clinical whole-exome sequencing. JAMA 312(18):1870–1879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Valencia CA, Husami A, Holle J, Johnson JA, Qian Y, Mathur A, Wei C, Indugula SR, Zou F, Meng H, Wang L, Li X, Fisher R, Tan T, Hogart Begtrup A, Collins K, Wusik KA, Neilson D, Burrow T, Schorry E, Hopkin R, Keddache M, Harley JB, Kaufman KM, Zhang K (2015) Clinical impact and cost-effectiveness of whole exome sequencing as a diagnostic tool: a pediatric center’s experience. Front Pediatr 3:67

    Article  PubMed  PubMed Central  Google Scholar 

  75. Lee H, Deignan JL, Dorrani N, Strom SP, Kantarci S, Quintero-Rivera F, Das K, Toy T, Harry B, Yourshaw M, Fox M, Fogel BL, Martinez-Agosto JA, Wong DA, Chang VY, Shieh PB, Palmer CG, Dipple KM, Grody WW, Vilain E, Nelson SF (2014) Clinical exome sequencing for genetic identification of rare Mendelian disorders. JAMA 312(18):1880–1887

    Article  PubMed  PubMed Central  Google Scholar 

  76. Rehm HL, Bale SJ, Bayrak-Toydemir P, Berg JS, Brown KK, Deignan JL, Friez MJ, Funke BH, Hegde MR, Lyon E, Working Group of the American College of Medical Genetics and Genomics Laboratory Quality Assurance Committee (2013) ACMG clinical laboratory standards for next-generation sequencing. Genet Med 15(9):733–747

    Article  PubMed  PubMed Central  Google Scholar 

  77. Jamal SM, Yu JH, Chong JX, Dent KM, Conta JH, Tabor HK, Bamshad MJ (2013) Practices and policies of clinical exome sequencing providers: analysis and implications. Am J Med Genet A 161A(5):935–950

    Article  PubMed  Google Scholar 

  78. Kalia SS, Adelman K, Bale SJ, Chung WK, Eng C, Evans JP, Herman GE, Hufnagel SB, Klein TE, Korf BR, McKelvey KD, Ormond KE, Richards CS, Vlangos CN, Watson M, Martin CL, Miller DT (2017) Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. Genet Med 19(2):249–255

    Article  PubMed  Google Scholar 

  79. Hufnagel SB, Antommaria AH (2014) Laboratory policies on reporting secondary findings in clinical whole exome sequencing: initial uptake of the ACMG’s recommendations. Am J Med Genet A 164A(5):1328–1331

    Article  PubMed  Google Scholar 

  80. Appelbaum PS, Parens E, Waldman CR, Klitzman R, Fyer A, Martinez J, Price WN 2nd, Chung WK (2014) Models of consent to return of incidental findings in genomic research. Hastings Cent Rep 44(4):22–32

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

American Society of Nephrology, Ben J. Lipps Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashima Gulati.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Glossary

Bioinformatics tools

Sophisticated computer programs enabling processing and analysis of large scale genomic data to generate meaningful information with speed and accuracy

Complex inheritance

More than one or many genes with small individual effects collectively contributing to a given phenotype

Coding variants

Genetic variants that lie within the protein-coding or exonic region of the genome

Coverage depth

Number of times a particular chromosomal position is sequenced. Greater coverage depth may increase the authenticity or the confidence of a variant call at that particular chromosomal position

Deleterious mutation

A mutation predicted to have an impact on protein function and thus likely to have a biological effect

De novo variant

New mutation arising in an embryo that is not carried by the somatic cells of either of the parents

DNA fragmentation

A step in the WES technique that employs physical, enzymatic or chemical methods to break DNA into smaller fragments so as to generate a nucleic acid sequence length that will be compatible for subsequent sequencing. Most modern next-generation sequencers can read up to 150 bp in length

Exome

All the exons in a genome collectively constitute the exome. The exome is the sum total of the transcribed portion of the genome, which thus includes all the protein coding genomic regions

Exome capture

A step in the WES technique that uses short oligonucleotide (DNA or RNA) sequences complementary to exon sequences in the genome to selectively bind to the exonic regions for subsequent sequencing, thus leaving behind the intervening nonprotein-coding introns. Most exome capture techniques use DNA or RNA sequences in a solution phase (solution-phase exome capture) for hybridization to the exonic regions of a sample of genomic DNA being subjected to WES

Genotyping

Testing a genome for a panel of known genetic variants

Genetic heterogeneity

Disease conditions where varied alleles of the same genes (allelic heterogeneity) or multiple genes at different chromosomal loci (locus heterogeneity) can account for similar phenotypic presentation

Gene modifiers

Modification of disease expression due to other genes (modifier genes) interacting with the primary disease-causing gene and modifying its effect. This genetic interaction may be a result of the involvement of common or intersecting biological pathways by different genes. The net biological effect may be different from that expected from simply additive properties of individual gene effects (epistasis)

Heritable variation

The proportion of phenotypic variation in a trait or disease condition accounted for by genetic factors

Hybridization baits

DNA or RNA sequences complementary to exonic regions in the genome that are used to hybridize and capture exons in the process of exome capture

Linkage analysis

Genes located in close proximity within a chromosomal location likely remain associated during random chromosomal crossover in meiosis and may thus be inherited together. Common inheritance of certain chromosomal regions in individuals with the same disease condition may thus provide information on the chromosomal location of the causative gene

Loss of function variants

These include truncation mutation, frame shift mutation, and canonical splice site variants, as these can most likely be predicted to result in loss of protein function

Minor allele frequency

Population frequency of the second most common allele at a particular chromosomal location

Mutation nomenclature (gene name) (longest mRNA transcript RefSeq database) (nucleotide change at exon location and coding sequence position “c”) (amino-acid change at protein position “p”)

Nonsynonymous (missense) mutation: e.g., PKD1: NM_001009944:exon2:c.T221A:p.V74D Human PKD1 with nucleotide change T>A at coding sequence position 221 results in amino-acid change at protein position 74 from a valine to aspartic acid Stop gain (truncating) mutation: PKD1: NM_001009944:exon5: c. G914A: p. W305X Introduction of a stop codon resulting in protein sequence termination at position 305 normally coding for a tryptophan residue Frameshift insertion: PKD1: NM_001009944:exon46: c.12627_12628insAG:p. P4210fs Two base-pair deletion at coding positions 12627 and 12628 causing frameshift (fs) at protein position 4210 Frameshift deletion: PKD1: NM_001009944:exon7: c.1426delG: p. V476fs One base-pair deletion at coding position 1426 causing frameshift at protein position 476 Splice site mutation: PKD1: NM_001009944:exon38: c.11016+1G>A Nucleotide change G to A at one base pair position downstream to the exon–intron junction causing alteration of the canonical exon–intron splicing

Nonsynonymous SNV

SNV that results in an amino-acid change in a protein sequence

Repetitive sequences

DNA sequences in the genome that share high homology or similarity with each other and hence may get mis-mapped to the reference genome, resulting in false variant calls

Single nucleotide variation (SNV)

Or a single base pair substitution, e.g., guanine (G) is replaced by adenine (A)

Structural variation

Large insertion/deletions or copy number variation

Trio

Proband and both biological parents

Variant annotation

Characterization of genetic variants, e.g., based on the type of mutation, the frequency in public databases, quality scoring parameters, bioinformatics predictions for effect on protein function

Variant filtering

Downsizing the number of variant calls in a WES analysis dataset based on various parameters such as population frequency, quality scores, coverage depth, predicted effect on protein function, relevance to the particular inheritance model being analyzed

Whole exome sequencing (WES)

Sequencing all the protein coding regions or exons in their entirety. The exon–intron boundaries are usually included in the sequencing, whereas the intervening intronic regions are not

Whole genome sequencing (WGS)

Sequencing the entire genome including all the exons or the protein-coding regions and the nonprotein-coding intronic regions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulati, A., Somlo, S. Whole exome sequencing: a state-of-the-art approach for defining (and exploring!) genetic landscapes in pediatric nephrology. Pediatr Nephrol 33, 745–761 (2018). https://doi.org/10.1007/s00467-017-3698-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-017-3698-0

Keywords

Navigation