Skip to main content

Advertisement

Log in

Acute kidney injury and fluid overload in infants and children after cardiac surgery

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Acute kidney injury is a common and serious complication after congenital heart surgery, particularly among infants. This comorbidity has been independently associated with adverse outcomes including an increase in mortality. Postoperative acute kidney injury has a complex pathophysiology with many risk factors, and therefore no single medication or therapy has been demonstrated to be effective for treatment or prevention. However, it has been established that the associated fluid overload is one of the major determinants of morbidity, particularly in infants after cardiac surgery. Therefore, in the absence of an intervention to prevent acute kidney injury, much of the effort to improve outcomes has focused on treating and preventing fluid overload. Early renal replacement therapy, often in the form of peritoneal dialysis, has been shown to be safe and beneficial in infants with oliguria after heart surgery. As understanding of the pathophysiology of acute kidney injury and the ability to confidently diagnose it earlier continues to evolve, it is likely that novel preventative and therapeutic interventions will be available in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Li S, Krawczeski CD, Zappitelli M, Devarajan P, Thiessen-Philbrook H, Coca SG, Kim RW, Parikh CR (2011) Incidence, risk factors, and outcomes of acute kidney injury after pediatric cardiac surgery—a prospective multicenter study. Crit Care Med 39:1493

    Article  PubMed  PubMed Central  Google Scholar 

  2. Blinder JJ, Goldstein SL, Lee V-V, Baycroft A, Fraser CD, Nelson D, Jefferies JL (2012) Congenital heart surgery in infants: effects of acute kidney injury on outcomes. J Thorac Cardiovasc Surg 143:368–374

    Article  PubMed  Google Scholar 

  3. Morgan CJ, Zappitelli M, Robertson CM, Alton GY, Sauve RS, Joffe AR, Ross DB, Rebeyka IM, Western Canadian Complex Pediatric Therapies Follow-Up Group (2013) Risk factors for and outcomes of acute kidney injury in neonates undergoing complex cardiac surgery. J Pediatr 162:120–127.e1

    Article  PubMed  Google Scholar 

  4. Williams DM, Sreedhar SS, Mickell JJ, Chan JC (2002) Acute kidney failure: a pediatric experience over 20 years. Arch Pediatr Adolesc Med 156:893–900

    Article  PubMed  Google Scholar 

  5. Krawczeski CD, Goldstein SL, Woo JG, Wang Y, Piyaphanee N, Ma Q, Bennett M, Devarajan P (2011) Temporal relationship and predictive value of urinary acute kidney injury biomarkers after pediatric cardiopulmonary bypass. J Am Coll Cardiol 58:2301–2309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Machado MN, Nakazone MA, Maia LN (2014) Acute kidney injury based on KDIGO (Kidney Disease Improving Global Outcomes) criteria in patients with elevated baseline serum creatinine undergoing cardiac surgery. Rev Bras Cir Cardiovasc 29:299–307

    PubMed  PubMed Central  Google Scholar 

  7. Novis BK, Roizen MF, Aronson S, Thisted RA (1994) Association of preoperative risk factors with postoperative acute renal failure. Anesth Analg 78:143–149

    Article  CAS  PubMed  Google Scholar 

  8. Kellum JA, Lameire N (2013) Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit Care 17:204

    Article  PubMed  PubMed Central  Google Scholar 

  9. Akcan-Arikan A, Zappitelli M, Loftis L, Washburn K, Jefferson L, Goldstein S (2007) Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int 71:1028–1035

    Article  CAS  PubMed  Google Scholar 

  10. Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, Levin A (2007) Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 11:R31

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lex DJ, Tóth R, Cserép Z, Alexander SI, Breuer T, Sápi E, Szatmári A, Székely E, Gál J, Székely A (2014) A comparison of the systems for the identification of postoperative acute kidney injury in pediatric cardiac patients. Ann Thorac Surg 97:202–210

    Article  PubMed  Google Scholar 

  12. Kaddourah A, Basu RK, Bagshaw SM, Goldstein SL (2017) Epidemiology of acute kidney injury in critically ill children and young adults. N Engl J Med 376:11–20

    Article  PubMed  Google Scholar 

  13. Zappitelli M, Bernier P-L, Saczkowski RS, Tchervenkov CI, Gottesman R, Dancea A, Hyder A, Alkandari O (2009) A small post-operative rise in serum creatinine predicts acute kidney injury in children undergoing cardiac surgery. Kidney Int 76:885–892

    Article  CAS  PubMed  Google Scholar 

  14. Hassinger AB, Backer CL, Lane JC, Haymond S, Wang D, Wald EL (2012) Predictive power of serum cystatin C to detect acute kidney injury and pediatric-modified RIFLE class in children undergoing cardiac surgery. Pediatr Crit Care Med 13:435–440

    Article  PubMed  Google Scholar 

  15. Spahillari A, Parikh CR, Sint K, Koyner JL, Patel UD, Edelstein CL, Passik CS, Thiessen-Philbrook H, Swaminathan M, Shlipak MG (2012) Serum cystatin C- versus creatinine-based definitions of acute kidney injury following cardiac surgery: a prospective cohort study. Am J Kidney Dis 60:922–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dharnidharka VR, Kwon C, Stevens G (2002) Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis 40:221–226

    Article  CAS  PubMed  Google Scholar 

  17. Meersch M, Schmidt C, Van Aken H, Martens S, Rossaint J, Singbartl K, Görlich D, Kellum JA, Zarbock A (2014) Urinary TIMP-2 and IGFBP7 as early biomarkers of acute kidney injury and renal recovery following cardiac surgery. PLoS One 9:e93460

    Article  PubMed  PubMed Central  Google Scholar 

  18. Meersch M, Schmidt C, Van Aken H, Rossaint J, Görlich D, Stege D, Malec E, Januszewska K, Zarbock A (2014) Validation of cell-cycle arrest biomarkers for acute kidney injury after pediatric cardiac surgery. PLoS One 9:e110865

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kwiatkowski DM, Goldstein SL, Krawczeski CD (2012) Biomarkers of acute kidney injury in pediatric cardiac patients. Biomarkers 6:273–282

    Article  CAS  Google Scholar 

  20. Chawla LS, Kellum JA (2012) Acute kidney injury in 2011: biomarkers are transforming our understanding of AKI. Nat Rev Nephrol 8:68–70

    Article  CAS  PubMed  Google Scholar 

  21. Vanmassenhove J, Vanholder R, Nagler E, Van Biesen W (2013) Urinary and serum biomarkers for the diagnosis of acute kidney injury: an in-depth review of the literature. Nephrol Dial Transplant 28:254–273

    Article  CAS  PubMed  Google Scholar 

  22. Basu RK, Wong HR, Krawczeski CD, Wheeler DS, Manning PB, Chawla LS, Devarajan P, Goldstein SL (2014) Combining functional and tubular damage biomarkers improves diagnostic precision for acute kidney injury after cardiac surgery. J Am Coll Cardiol 64:2753–2762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Abuelo JG (2007) Normotensive ischemic acute renal failure. N Engl J Med 357:797–805

    Article  CAS  PubMed  Google Scholar 

  24. Devarajan P (2006) Update on mechanisms of ischemic acute kidney injury. J Am Soc Nephrol 17:1503–1520

    Article  CAS  PubMed  Google Scholar 

  25. Rosner MH, Okusa MD (2006) Acute kidney injury associated with cardiac surgery. Clin J Am Soc Nephrol 1:19–32

    Article  PubMed  Google Scholar 

  26. Okusa MD (2002) The inflammatory cascade in acute ischemic renal failure. Nephron 90:133–138

    Article  CAS  PubMed  Google Scholar 

  27. Algaze CA, Koth AM, Faberowski LW, Hanley FL, Krawczeski CD, Axelrod DM (2017) Acute kidney injury in patients undergoing the extracardiac Fontan operation with and without the use of cardiopulmonary bypass. Pediatr Crit Care Med 18:34–43

    Article  PubMed  Google Scholar 

  28. Stafford-Smith M, Podgoreanu M, Swaminathan M, Phillips-Bute B, Mathew JP, Hauser EH, Winn MP, Milano C, Nielsen DM, Smith M (2005) Association of genetic polymorphisms with risk of renal injury after coronary bypass graft surgery. Am J Kidney Dis 45:519–530

    Article  CAS  PubMed  Google Scholar 

  29. Cardinal-Fernández P, Ferruelo A, Martín-Pellicer A, Nin N, Esteban A, Lorente J (2012) Genetic determinants of acute renal damage risk and prognosis: a systematic review. Med Intensiva (English Edition) 36:626–633

    Article  Google Scholar 

  30. Lassnigg A, Schmid ER, Hiesmayr M, Falk C, Druml W, Bauer P, Schmidlin D (2008) Impact of minimal increases in serum creatinine on outcome in patients after cardiothoracic surgery: do we have to revise current definitions of acute renal failure? Crit Care Med 36:1129–1137

    Article  CAS  PubMed  Google Scholar 

  31. Cooper DS, Claes D, Goldstein SL, Menon S, Bennett M, Ma Q, Krawczeski C (2013) Novel urinary biomarkers remain elevated years after acute kidney injury following cardiac surgery in children. J Am Coll Cardiol 61:E438

    Article  Google Scholar 

  32. Nichols DG, Greeley WJ, Lappe DG, Ungerleider RM, Cameron DE, Spevak PJ, Wetzel RC (2006) Critical heart disease in infants and children. Elsevier Health Science, Amsterdam, pp 113–130

    Google Scholar 

  33. Sutherland SM, Zappitelli M, Alexander SR, Chua AN, Brophy PD, Bunchman TE, Hackbarth R, Somers MJ, Baum M, Symons JM, Flores FX, Benfield M, Askenazi D, Chand D, Fortenberry JD, Mahan JD, McBryde K, Blowey D, Goldstein SL (2010) Fluid overload and mortality in children receiving continuous renal replacement therapy: the prospective pediatric continuous renal replacement therapy registry. Am J Kidney Dis 55:316–325

    Article  PubMed  Google Scholar 

  34. Hassinger AB, Wald EL, Goodman DM (2014) Early postoperative fluid overload precedes acute kidney injury and is associated with higher morbidity in pediatric cardiac surgery patients. Pediatr Crit Care Med 15:131–138

    Article  PubMed  Google Scholar 

  35. Wilder NS, Yu S, Donohue JE, Goldberg CS, Blatt NB (2016) Fluid overload is associated with late poor outcomes in neonates following cardiac surgery. Pediatr Crit Care Med 17:420–427

    Article  PubMed  PubMed Central  Google Scholar 

  36. Costello JM, Thiagarajan RR, Dionne RE, Allan CK, Booth KL, Burmester M, Wessel DL, Laussen PC (2006) Initial experience with fenoldopam after cardiac surgery in neonates with an insufficient response to conventional diuretics. Pediatr Crit Care Med 7:28–33

    Article  PubMed  Google Scholar 

  37. Axelrod DM, Anglemyer AT, Sherman-Levine SF, Zhu A, Grimm PC, Roth SJ, Sutherland SM (2014) Initial experience using aminophylline to improve renal dysfunction in the pediatric cardiovascular ICU. Pediatr Crit Care Med 15:21–27

    Article  PubMed  Google Scholar 

  38. Axelrod DM, Sutherland SM, Anglemyer A, Grimm PC, Roth SJ (2016) A double-blinded, randomized, placebo-controlled clinical trial of aminophylline to prevent acute kidney injury in children following congenital heart surgery with cardiopulmonary bypass. Pediatr Crit Care Med 17:135–143

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ricci Z, Stazi GV, Di Chiara L, Morelli S, Vitale V, Giorni C, Ronco C, Picardo S (2008) Fenoldopam in newborn patients undergoing cardiopulmonary bypass: controlled clinical trial. Interact Cardiovasc Thorac Surg 7:1049–1053

    Article  PubMed  Google Scholar 

  40. Costello JM, Masterson CD, Allan CK, Gauvreau K, Newburger JW, McGowan FX, Wessel DL, Mayer JE, Salvin JW, Dionne RE (2014) Impact of empiric nesiritide or milrinone infusion on early postoperative recovery following Fontan surgery: a randomized, double-blind, placebo-controlled trial. Circ Heart Fail 7:596–604

    Article  CAS  PubMed  Google Scholar 

  41. Sampath S, Moran JL, Graham PL, Rockliff S, Bersten AD, Abrams KR (2007) The efficacy of loop diuretics in acute renal failure: assessment using Bayesian evidence synthesis techniques. Crit Care Med 35:2516–2524

    Article  CAS  PubMed  Google Scholar 

  42. Mehta RL, Pascual MT, Soroko S, Chertow GM, Group PS (2002) Diuretics, mortality, and nonrecovery of renal function in acute renal failure. JAMA 288:2547–2553

    Article  CAS  PubMed  Google Scholar 

  43. Van der Vorst MM, Kist JE, van der Heijden AJ, Burggraaf J (2006) Diuretics in pediatrics. Pediatr Drugs 8:245–264

    Article  Google Scholar 

  44. Madenci AL, Stoffan AP, Rajagopal SK, Blinder JJ, Emani SM, Thiagarajan RR, Weldon CB (2013) Factors associated with survival in patients who undergo peritoneal dialysis catheter placement following cardiac surgery. J Pediatr Surg 48:1269–1276

    Article  PubMed  Google Scholar 

  45. Madenci AL, Thiagarajan RR, Stoffan AP, Emani SM, Rajagopal SK, Weldon CB (2013) Characterizing peritoneal dialysis catheter use in pediatric patients after cardiac surgery. J Thorac Cardiovasc Surg 146:334–338

    Article  PubMed  Google Scholar 

  46. Bojan M, Gioanni S, Vouhé PR, Journois D, Pouard P (2012) Early initiation of peritoneal dialysis in neonates and infants with acute kidney injury following cardiac surgery is associated with a significant decrease in mortality. Kidney Int 82:474–481

    Article  CAS  PubMed  Google Scholar 

  47. Kwiatkowski DM, Menon S, Krawczeski CD, Goldstein SL, Morales DL, Phillips A, Manning PB, Eghtesady P, Wang Y, Nelson DP (2015) Improved outcomes with peritoneal dialysis catheter placement after cardiopulmonary bypass in infants. J Thorac Cardiovasc Surg 149:230–236

    Article  PubMed  Google Scholar 

  48. Sasser WC, Dabal RJ, Askenazi DJ, Borasino S, Moellinger AB, Kirklin JK, Alten JA (2014) Prophylactic peritoneal dialysis following cardiopulmonary bypass in children is associated with decreased inflammation and improved clinical outcomes. Congenit Heart Dis 9:106–115

    Article  PubMed  Google Scholar 

  49. Goldstein SL, Somers MJ, Baum MA, Symons JM, Brophy PD, Blowey D, Bunchman TE, Baker C, Mottes T, Mcafee N (2005) Pediatric patients with multi-organ dysfunction syndrome receiving continuous renal replacement therapy. Kidney Int 67:653–658

    Article  PubMed  Google Scholar 

  50. Stromberg D, Fraser CD Jr, Sorof JM, Drescher K, Feltes TF (1997) Peritoneal dialysis. An adjunct to pediatric postcardiotomy fluid management. Tex Heart Inst J 24:269

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Alkan T, Akçevin A, Türkoglu H, Paker T, Sasmazel A, Bayer V, Ersoy C, Askn D, Aytaç A (2006) Postoperative prophylactic peritoneal dialysis in neonates and infants after complex congenital cardiac surgery. ASAIO J 52:693–697

    Article  PubMed  Google Scholar 

  52. Chien J-C, Hwang B-T, Weng Z-C, Meng LC-C, Lee P-C (2009) Peritoneal dialysis in infants and children after open heart surgery. Pediatr Neonatol 50:275–279

    Article  PubMed  Google Scholar 

  53. Averbuch N, Birk E, Frenkel G, Gogia O, Shulman OM, Bruckheimer E, Nachum E, Amir G (2014) Percutaneous intraperitoneal catheters in neonates following open heart surgery. J Intensive Care Med 29:160–164

    Article  PubMed  Google Scholar 

  54. Kwiatkowski DM, Goldstein SL, Cooper DS, Nelson DP, Morales DS, Krawczeski CD (2017) Peritoneal dialysis vs furosemide for prevention of fluid overload in infants after cardiac surgery: a randomized clinical trial. JAMA Pediatr. doi:10.1001/jamapediatrics.2016.4538

    PubMed  Google Scholar 

  55. Riley AA, Jefferies JL, Nelson DP, Bennett MR, Blinder JJ, Ma Q, Devarajan P, Goldstein SL (2014) Peritoneal dialysis does not adversely affect kidney function recovery after congenital heart surgery. Int J Artif Organs 37:39–47

    Article  PubMed  PubMed Central  Google Scholar 

  56. Fleming GM, Askenazi DJ, Bridges BC, Cooper DS, Paden ML, Selewski DT, Zappitelli M (2012) A multicenter international survey of renal supportive therapy during ECMO: the Kidney Intervention During Extracorporeal Membrane Oxygenation (KIDMO) group. ASAIO J 58:407–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Kwiatkowski.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Key summary points

1. AKI is common in infants and children after cardiac surgery with CPB.

2. In this cohort, AKI is associated with worse outcomes, including mortality.

3. Diagnosis of AKI is impaired by the reliance on serum creatinine.

4. Fluid overload is one of the major determinants of morbidity and mortality in children with postoperative AKI.

5. Early peritoneal dialysis is a safe and effective method of fluid removal in patients after congenital heart surgery.

Answers

1. d; 2. a; 3. d; 4. e; 5. b

Questions (answers are provided following the reference list)

Questions (answers are provided following the reference list)

  1. 1.

    Using KDIGO AKI criteria, what minimum creatinine change defines AKI?

    1. a)

      Creatinine increase of 0.3 mg/dl

    2. b)

      Creatinine increase of 0.5 mg/dl

    3. c)

      Creatinine increase of 2 times baseline

    4. d)

      Creatinine increase of 0.3 mg/dl or 1.5 times baseline

    5. e)

      Creatinine increase of 0.5 mg/dl or 2 times baseline

  2. 2.

    What is the most common timeframe for AKI after CPB in infants and children?

    1. a)

      First 24–48 h, lasting for 1–2 days

    2. b)

      First 24–48 h, lasting for 4 days

    3. c)

      First 72–96 h, lasting for 1–2 days

    4. d)

      First 72–96 h, lasting for 4 days

    5. e)

      Greater than 7 days, lasting for 1 day

  3. 3.

    Which of the following is a biomarker of renal tubule structural injury?

    1. a)

      Cystatin-C

    2. b)

      Creatinine

    3. c)

      Urine output

    4. d)

      NephroCheck

  4. 4.

    Which of the following is not associated with fluid overload?

    1. a)

      Decreased nutritional absorption

    2. b)

      Increased rate of infection

    3. c)

      Decreased myocardial contraction

    4. d)

      Increased mortality

    5. e)

      Increased lung compliance

  5. 5.

    In an infant with oliguria after cardiac surgery, which of the following therapies is shown to be associated with less fluid overload and a lower rate of prolonged mechanical ventilation?

    1. a)

      Dobutamine

    2. b)

      Peritoneal dialysis

    3. c)

      Nesiritide

    4. d)

      Furosemide

    5. e)

      Aminophylline

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwiatkowski, D.M., Krawczeski, C.D. Acute kidney injury and fluid overload in infants and children after cardiac surgery. Pediatr Nephrol 32, 1509–1517 (2017). https://doi.org/10.1007/s00467-017-3643-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-017-3643-2

Keywords

Navigation