Skip to main content
Log in

Prevalence of chronic kidney disease risk factors among low birth weight adolescents

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

By adulthood, low birth weight infants have an increased risk for chronic kidney disease (CKD). The extent to which objective CKD risk factors are present at earlier ages is unclear.

Methods

We analyzed 5352 participants aged 12–15 years in the National Health and Nutrition Examination Survey, 1999–2012. Participants were classified as low birth weight (LBW; < 2500 g), very low birth weight (VLBW; < 1500 g), or normal (2500–4000 g) by parental/proxy recall. Albuminuria (albumin/creatinine 30 – <300 mg/g), decreased estimated glomerular filtration rate (eGFR; < 90 ml/min/1.73 m2; Counahan–Barratt), and elevated systolic blood pressure (BP; ≥ 95th percentile for age, height, and sex) were considered CKD risk factors.

Results

While albuminuria did not vary by birth weight, elevated blood pressure (BP) and decreased eGFR occurred more frequently in LBW/VLBW adolescents (elevated BP: LBW 6.0 %, VLBW 11.2 %, normal 2.4 %; decreased eGFR: LBW 23.2 %, VLBW 32.5 %, normal 16.1 %). After multivariable adjustment, LBW/VLBW adolescents had greater odds for both elevated BP (LBW: OR 2.90, 95 % CI 1.48–5.71; VLBW: 5.23; 1.11–24.74) and decreased eGFR (LBW: 1.49, 95 % CI 1.06–2.10; VLBW 2.49, 95 % CI 1.20–5.18).

Conclusions

In the U.S. population, both decreased eGFR and elevated systolic BP occur frequently among adolescents with history of LBW/VLBW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Meguid El Nahas A, Bello AK (2005) Chronic kidney disease: the global challenge. Lancet 365:331–340

    Article  CAS  PubMed  Google Scholar 

  2. Couser WG, Remuzzi G, Mendis S, Tonelli M (2011) The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int 80:1258–1270

    Article  PubMed  Google Scholar 

  3. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612

    Article  PubMed  PubMed Central  Google Scholar 

  4. U.S. Renal Data System (2011) USRDS 2011 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, p 282. http://www.usrds.org/2011/pdf/v2_ch011_11.pdf. Accessed March 7, 2016.

  5. Levey AS, Coresh J (2012) Chronic kidney disease. Lancet 379:165–180

    Article  PubMed  Google Scholar 

  6. Levey AS, Andreoli SP, DuBose T, Provenzano R, Collins AJ (2007) Chronic kidney disease: common, harmful, and treatable – World Kidney Day 2007. Clin J Am Soc Nephrol 2:401–405

    Article  PubMed  Google Scholar 

  7. White SL, Perkovic V, Cass A, Chang CL, Poulter NR, Spector T, Haysom L, Craig JC, Salmi IA, Chadban SJ, Huxley RR (2009) Is low birth weight an antecedent of CKD in later life? A systematic review of observational studies. Am J Kidney Dis 54:248–261

    Article  PubMed  Google Scholar 

  8. National Kidney Foundation (2002) K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 39(2 Suppl 1):S1–S266

    Google Scholar 

  9. National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents (2004) The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 114(2 Suppl 4th Report):555–576

    Article  Google Scholar 

  10. Selvin E, Manzi J, Stevens LA, Van Lente F, Lacher DA, Levey AS, Coresh J (2007) Calibration of serum creatinine in the National Health and Nutrition Examination Surveys (NHANES) 1988–1994, 1999–2004. Am J Kidney Dis 50:918–926

    Article  CAS  PubMed  Google Scholar 

  11. Centers for Disease Control and Prevention (CDC) (2015) National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey 2005–2006, Data Documentation, Codebook, and Frequencies. Standard Biochemistry Profile (BIOPRO_D). March 2008. http://wwwn.cdc.gov/Nchs/Nhanes/2005–2006/BIOPRO_D.htm. Accessed June 15, 2015

  12. Counahan R, Chantler C, Ghazali S, Kirkwood B, Rose F, Barratt TM (1976) Estimation of glomerular filtration rate from plasma creatinine concentration in children. Arch Dis Child 51:875–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey 2007–2008, Data Documentation, Codebook, and Frequencies: Albumin & Creatinine – Urine (ALB_CR_E). September 2009. http://wwwn.cdc.gov/Nchs/Nhanes/2007–2008/ALB_CR_E.htm. Accessed June 15, 2015

  14. Bender R, Blettner M (2002) Calculating the “number needed to be exposed” with adjustment for confounding variables in epidemiological studies. J Clin Epidemiol 55:525–530

    Article  PubMed  Google Scholar 

  15. Miettinen OS (1974) Proportion of disease caused or prevented by a given exposure, trait, or intervention. Am J Epidemiol 99:325–332

    CAS  PubMed  Google Scholar 

  16. Charlton JR, Springsteen CH, Carmody JB (2014) Nephron number and its determinants in early life: a primer. Pediatr Nephrol 29:2299–2308

    Article  PubMed  Google Scholar 

  17. Abitbol CL, Rodriguez MM (2012) The long-term renal and cardiovascular consequence of prematurity. Nat Rev Nephrol 8:265–274

    Article  CAS  PubMed  Google Scholar 

  18. Luyckx VA, Bertram JF, Brenner BM, Fall C, Hoy WE, Ozanne SE, Vikse BE (2013) Effect of fetal and child health on kidney development and long-term risk of hypertension and kidney disease. Lancet 382:273–283

    Article  PubMed  Google Scholar 

  19. Hodgin JB, Rasoulpour M, Markowitz GS, D’Agati VD (2009) Very low birth weight is a risk factor for secondary focal segmental glomerulosclerosis. Clin J Am Soc Nephrol 4:71–76

    Article  PubMed  PubMed Central  Google Scholar 

  20. Koralkar R, Ambalavanan N, Levitan EB, McGwin G, Goldstein S, Askenazi D (2011) Acute kidney injury reduces survival in very low birth weight infants. Pediatr Res 69:354–358

    Article  PubMed  Google Scholar 

  21. Carmody JB, Swanson JR, Rhone ET, Charlton JR (2014) Recognition and reporting of AKI in very low birth weight infants. Clin J Am Soc Nephrol 9:2036–2043

    Article  PubMed  PubMed Central  Google Scholar 

  22. Abitbol CL, Bauer CR, Montane B, Chandar J, Duara S, Zilleruelo G (2003) Long-term follow-up of extremely low birth weight infants with neonatal renal failure. Pediatr Nephrol 18:887–893

    Article  PubMed  Google Scholar 

  23. Askenazi DJ, Morgan C, Goldstein SL, Selewski DT, Moxey-Mims MM, Kimmel PL, Star RA, Higgins R, Laughon M (2015) Strategies to improve the understanding of long-term renal consequences after neonatal acute kidney injury. Pediatr Res. doi:10.1038/pr.2015.241

    PubMed Central  Google Scholar 

  24. Selewski DT, Charlton JR, Jetton JG, Guillet R, Mhanna MJ, Askenazi DJ, Kent AL (2015) Neonatal acute kidney injury. Pediatrics 136:e463–e473

    Article  PubMed  Google Scholar 

  25. Rhone ET, Carmody JB, Swanson JR, Charlton JR (2014) Nephrotoxic medication exposure in very low birth weight infants. J Matern Fetal Neonatal Med 27:1485–1490

    Article  CAS  PubMed  Google Scholar 

  26. Huxley RR, Shiell AW, Law CM (2000) The role of size at birth and postnatal catch-up growth in determining systolic blood pressure: a systematic review of the literature. J Hypertens 18:815–831

    Article  CAS  PubMed  Google Scholar 

  27. Luyckx VA, Brenner BM (2015) Birth weight, malnutrition and kidney-associated outcomes—a global concern. Nat Rev Nephrol 11:135–149

    Article  PubMed  Google Scholar 

  28. Silverwood RJ, Pierce M, Hardy R, Sattar N, Whincup P, Ferro C, Savage C, Kuh D, Nitsch D (2013) Low birth weight, later renal function, and the roles of adulthood blood pressure, diabetes, and obesity in a British birth cohort. Kidney Int 84:1262–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. American Academy of Pediatrics. Committee on Practice and Ambulatory Medicine and Committee on Fetus and Newborn (1996) The role of the primary care pediatrician in the management of high-risk newborn infants. Pediatrics 98:786–788

    Google Scholar 

  30. Wang CJ, McGlynn EA, Brook RH, Leonard CH, Piecuch RE, Hsueh SI, Schuster MA (2006) Quality-of-care indicators for the neurodevelopmental follow-up of very low birth weight children: results of an expert panel process. Pediatrics 117:2080–2092

    Article  PubMed  Google Scholar 

  31. Carmody JB, Charlton JR (2013) Short-term gestation, long-term risk: prematurity and chronic kidney disease. Pediatrics 131:1168–1179

    Article  PubMed  Google Scholar 

  32. Brandt JR, Jacobs A, Raissy HH, Kelly FM, Staples AO, Kaufman E, Wong CS (2010) Orthostatic proteinuria and the spectrum of diurnal variability of urinary protein excretion in healthy children. Pediatr Nephrol 25:1131–1137

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jefferson IG, Greene SA, Smith MA, Smith RF, Griffin NK, Baum JD (1985) Urine albumin to creatinine ratio—response to exercise in diabetes. Arch Dis Child 60:305–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nguyen S, McCulloch C, Brakeman P, Portale A, Hsu CY (2008) Being overweight modifies the association between cardiovascular risk factors and microalbuminuria in adolescents. Pediatrics 121:37–45

    Article  PubMed  PubMed Central  Google Scholar 

  35. Klahr S (1989) The kidney in hypertension: villain and victim. N Engl J Med 320:731–733

    Article  CAS  PubMed  Google Scholar 

  36. Fadrowski JJ, Neu AM, Schwartz GJ, Furth SL (2011) Pediatric GFR estimating equations applied to adolescents in the general population. Clin J Am Soc Nephrol 6:1427–1435

    Article  PubMed  PubMed Central  Google Scholar 

  37. McMahon GM, Preis SR, Hwang SJ, Fox CS (2014) Mid-adulthood risk factor profiles for CKD. J Am Soc Nephrol 25:2633–2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fox CS, Larson MG, Leip EP, Culleton B, Wilson PW, Levy D (2004) Predictors of new-onset kidney disease in a community-based population. JAMA 291:844–850

    Article  CAS  PubMed  Google Scholar 

  39. Coon ER, Quinonez RA, Moyer VA, Schroeder AR (2014) Overdiagnosis: how our compulsion for diagnosis may be harming children. Pediatrics 134:1013–1023

    Article  PubMed  Google Scholar 

  40. Falkner B, Gidding SS, Portman R, Rosner B (2008) Blood pressure variability and classification of prehypertension and hypertension in adolescence. Pediatrics 122:238–242

    Article  PubMed  Google Scholar 

  41. Redwine KM, Acosta AA, Poffenbarger T, Portman RJ, Samuels J (2012) Development of hypertension in adolescents with pre-hypertension. J Pediatr 160:98–103

    Article  PubMed  Google Scholar 

  42. Tirosh A, Afek A, Rudich A, Percik R, Gordon B, Ayalon N, Derazne E, Tzur D, Gershnabel D, Grossman E, Karasik A, Shamiss A, Shai I (2010) Progression of normotensive adolescents to hypertensive adults: a study of 26,980 teenagers. Hypertension 56:203–209

    Article  CAS  PubMed  Google Scholar 

  43. Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637

    Article  PubMed  PubMed Central  Google Scholar 

  44. Staples A, LeBlond R, Watkins S, Wong C, Brandt J (2010) Validation of the revised Schwartz estimating equation in a predominantly non-CKD population. Pediatr Nephrol 25:2321–2326

    Article  PubMed  Google Scholar 

  45. Kensara OA, Wootton SA, Phillips DI, Patel M, Jackson AA, Elia M (2005) Fetal programming of body composition: relation between birth weight and body composition measured with dual-energy X-ray absorptiometry and anthropometric methods in older Englishmen. Am J Clin Nutr 82:980–987

    CAS  PubMed  Google Scholar 

  46. O'Sullivan JJ, Pearce MS, Parker L (2000) Parental recall of birth weight: how accurate is it? Arch Dis Child 82:202–203

    Article  PubMed  PubMed Central  Google Scholar 

  47. Naglie G, Krahn MD, Naimark D, Redelmeier DA, Detsky AS (1997) Primer on medical decision analysis: Part 3—Estimating probabilities and utilities. Med Decis Making 17:136–141

    Article  CAS  PubMed  Google Scholar 

  48. Greenbaum LA, Munoz A, Schneider MF, Kaskel FJ, Askenazi DJ, Jenkins R, Hotchkiss H, Moxey-Mims M, Furth SL, Warady BA (2011) The association between abnormal birth history and growth in children with CKD. Clin J Am Soc Nephrol 6:14–21

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bryan Carmody.

Ethics declarations

The research ethics review board of the National Center for Health Statistics approved all study protocols, and both written consent from the participant’s guardian and verbal assent from the adolescent were obtained.

Funding

None.

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalsa, D.D.K., Beydoun, H.A. & Carmody, J.B. Prevalence of chronic kidney disease risk factors among low birth weight adolescents. Pediatr Nephrol 31, 1509–1516 (2016). https://doi.org/10.1007/s00467-016-3384-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-016-3384-7

Keywords

Navigation