Skip to main content
Log in

A holey pursuit: lumen formation in the developing kidney

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The formation of polarized epithelial tubules is a hallmark of kidney development. One of the fundamental principles in tubulogenesis is that epithelia coordinate the polarity of individual cells with the surrounding cells and matrix. A central feature in this process is the segregation of membranes into spatially and functionally distinct apical and basolateral domains, and the generation of a luminal space at the apical surface. This review examines our current understanding of the cellular and molecular mechanisms that underlie the establishment of apical–basal polarity and lumen formation in developing renal epithelia, including the roles of cell–cell and cell–matrix interactions and polarity complexes. We highlight growing evidence from animal models, and correlate these findings with models of tubulogenesis from other organ systems, and from in vitro studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CM:

Cap mesenchyme

MET:

Mesenchymal to epithelial transition

MM:

Metanephric mesenchyme

NCAM:

Neural cell adhesion molecule

PA:

Pretubular aggregate

PKD:

Polycystic kidney disease

RV:

Renal vesicle

UB:

Ureteric bud

References

  1. Schluter MA, Margolis B (2009) Apical lumen formation in renal epithelia. J Am Soc Nephrol 20:1444–1452

    Article  PubMed  Google Scholar 

  2. Wilson PD (2011) Apico-basal polarity in polycystic kidney disease epithelia. Biochim Biophys Acta 1812:1239–1248

    Article  CAS  PubMed  Google Scholar 

  3. Delous M, Hellman NE, Gaude HM, Silbermann F, Le Bivic A, Salomon R, Antignac C, Saunier S (2009) Nephrocystin-1 and nephrocystin-4 are required for epithelial morphogenesis and associate with PALS1/PATJ and Par6. Hum Mol Genet 18:4711–4723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Donaldson JC, Dise RS, Ritchie MD, Hanks SK (2002) Nephrocystin-conserved domains involved in targeting to epithelial cell-cell junctions, interaction with filamins, and establishing cell polarity. J Biol Chem 277:29028–29035

    Article  CAS  PubMed  Google Scholar 

  5. Halaoui R, McCaffrey L (2015) Rewiring cell polarity signaling in cancer. Oncogene 34:939–950

    Article  CAS  PubMed  Google Scholar 

  6. Lee DB, Huang E, Ward HJ (2006) Tight junction biology and kidney dysfunction. Am J Physiol Renal Physiol 290:F20–F34

    Article  CAS  PubMed  Google Scholar 

  7. Iruela-Arispe ML, Beitel GJ (2013) Tubulogenesis. Development 140:2851–2855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Datta A, Bryant DM, Mostov KE (2011) Molecular regulation of lumen morphogenesis. Curr Biol 21:R126–R136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lubarsky B, Krasnow MA (2003) Tube morphogenesis: making and shaping biological tubes. Cell 112:19–28

    Article  CAS  PubMed  Google Scholar 

  10. Maruyama R, Andrew DJ (2012) Drosophila as a model for epithelial tube formation. Dev Dyn 241:119–135

    Article  CAS  PubMed  Google Scholar 

  11. Buechner M (2002) Tubes and the single C. elegans excretory cell. Trends Cell Biol 12:479–484

    Article  CAS  PubMed  Google Scholar 

  12. Bar T, Guldner FH, Wolff JR (1984) “Seamless” endothelial cells of blood capillaries. Cell Tissue Res 235:99–106

    Article  CAS  PubMed  Google Scholar 

  13. Lazaro-Dieguez F, Cohen D, Fernandez D, Hodgson L, van Ijzendoorn SC, Musch A (2013) Par1b links lumen polarity with LGN-NuMA positioning for distinct epithelial cell division phenotypes. J Cell Biol 203:251–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Slim CL, Lazaro-Dieguez F, Bijlard M, Toussaint MJ, de Bruin A, Du Q, Musch A, van Ijzendoorn SC (2013) Par1b induces asymmetric inheritance of plasma membrane domains via LGN-dependent mitotic spindle orientation in proliferating hepatocytes. PLoS Biol 11:e1001739

    Article  PubMed  PubMed Central  Google Scholar 

  15. Medioni C, Astier M, Zmojdzian M, Jagla K, Semeriva M (2008) Genetic control of cell morphogenesis during Drosophila melanogaster cardiac tube formation. J Cell Biol 182:249–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Santiago-Martinez E, Soplop NH, Patel R, Kramer SG (2008) Repulsion by Slit and Roundabout prevents Shotgun/E-cadherin-mediated cell adhesion during Drosophila heart tube lumen formation. J Cell Biol 182:241–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mailleux AA, Overholtzer M, Brugge JS (2008) Lumen formation during mammary epithelial morphogenesis: insights from in vitro and in vivo models. Cell Cycle 7:57–62

    Article  CAS  PubMed  Google Scholar 

  18. Herzlinger DA, Easton TG, Ojakian GK (1982) The MDCK epithelial cell line expresses a cell surface antigen of the kidney distal tubule. J Cell Biol 93:269–277

    Article  CAS  PubMed  Google Scholar 

  19. Popsueva A, Poteryaev D, Arighi E, Meng X, Angers-Loustau A, Kaplan D, Saarma M, Sariola H (2003) GDNF promotes tubulogenesis of GFRalpha1-expressing MDCK cells by Src-mediated phosphorylation of Met receptor tyrosine kinase. J Cell Biol 161:119–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tang MJ, Cai Y, Tsai SJ, Wang YK, Dressler GR (2002) Ureteric bud outgrowth in response to RET activation is mediated by phosphatidylinositol 3-kinase. Dev Biol 243:128–136

    Article  CAS  PubMed  Google Scholar 

  21. Martin-Belmonte F, Yu W, Rodriguez-Fraticelli AE, Ewald AJ, Werb Z, Alonso MA, Mostov K (2008) Cell-polarity dynamics controls the mechanism of lumen formation in epithelial morphogenesis. Curr Biol 18:507–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bryant DM, Datta A, Rodriguez-Fraticelli AE, Peranen J, Martin-Belmonte F, Mostov KE (2010) A molecular network for de novo generation of the apical surface and lumen. Nat Cell Biol 12:1035–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schluter MA, Pfarr CS, Pieczynski J, Whiteman EL, Hurd TW, Fan S, Liu CJ, Margolis B (2009) Trafficking of Crumbs3 during cytokinesis is crucial for lumen formation. Mol Biol Cell 20:4652–4663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grobstein C (1953) Inductive epitheliomesenchymal interaction in cultured organ rudiments of the mouse. Science 118:52–55

    Article  CAS  PubMed  Google Scholar 

  25. Grobstein C (1956) Trans-filter induction of tubules in mouse metanephrogenic mesenchyme. Exp Cell Res 10:424–440

    Article  CAS  PubMed  Google Scholar 

  26. Cebrian C, Borodo K, Charles N, Herzlinger DA (2004) Morphometric index of the developing murine kidney. Dev Dyn 231:601–608

    Article  PubMed  Google Scholar 

  27. Short KM, Combes AN, Lefevre J, Ju AL, Georgas KM, Lamberton T, Cairncross O, Rumballe BA, McMahon AP, Hamilton NA, Smyth IM, Little MH (2014) Global quantification of tissue dynamics in the developing mouse kidney. Dev Cell 29:188–202

    Article  CAS  PubMed  Google Scholar 

  28. Saxen L, Wartiovaara J (1966) Cell contact and cell adhesion during tissue organization. Int J Cancer 1:271–290

    Article  CAS  PubMed  Google Scholar 

  29. Yang Z, Zimmerman S, Brakeman PR, Beaudoin GM 3rd, Reichardt LF, Marciano DK (2013) De novo lumen formation and elongation in the developing nephron: a central role for afadin in apical polarity. Development 140:1774–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ferrari A, Veligodskiy A, Berge U, Lucas MS, Kroschewski R (2008) ROCK-mediated contractility, tight junctions and channels contribute to the conversion of a preapical patch into apical surface during isochoric lumen initiation. J Cell Sci 121:3649–3663

    Article  CAS  PubMed  Google Scholar 

  31. Jose M, Tollis S, Nair D, Sibarita JB, McCusker D (2013) Robust polarity establishment occurs via an endocytosis-based cortical corralling mechanism. J Cell Biol 200:407–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Harris KP, Tepass U (2010) Cdc42 and vesicle trafficking in polarized cells. Traffic 11:1272–1279

    Article  CAS  PubMed  Google Scholar 

  33. Li D, Mangan A, Cicchini L, Margolis B, Prekeris R (2014) FIP5 phosphorylation during mitosis regulates apical trafficking and lumenogenesis. EMBO Rep 15:428–437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Wang T, Yanger K, Stanger BZ, Cassio D, Bi E (2014) Cytokinesis defines a spatial landmark for hepatocyte polarization and apical lumen formation. J Cell Sci 127:2483–2492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Morais-de-Sa E, Sunkel C (2013) Adherens junctions determine the apical position of the midbody during follicular epithelial cell division. EMBO Rep 14:696–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schober M, Schaefer M, Knoblich JA (1999) Bazooka recruits Inscuteable to orient asymmetric cell divisions in Drosophila neuroblasts. Nature 402:548–551

    Article  CAS  PubMed  Google Scholar 

  37. Wodarz A, Ramrath A, Kuchinke U, Knust E (1999) Bazooka provides an apical cue for Inscuteable localization in Drosophila neuroblasts. Nature 402:544–547

    Article  CAS  PubMed  Google Scholar 

  38. Hao Y, Du Q, Chen X, Zheng Z, Balsbaugh JL, Maitra S, Shabanowitz J, Hunt DF, Macara IG (2010) Par3 controls epithelial spindle orientation by aPKC-mediated phosphorylation of apical Pins. Curr Biol 20:1809–1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Durgan J, Kaji N, Jin D, Hall A (2011) Par6B and atypical PKC regulate mitotic spindle orientation during epithelial morphogenesis. J Biol Chem 286:12461–12474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jaffe AB, Kaji N, Durgan J, Hall A (2008) Cdc42 controls spindle orientation to position the apical surface during epithelial morphogenesis. J Cell Biol 183:625–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zheng Z, Zhu H, Wan Q, Liu J, Xiao Z, Siderovski DP, Du Q (2010) LGN regulates mitotic spindle orientation during epithelial morphogenesis. J Cell Biol 189:275–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Raj A, Peskin CS, Tranchina D, Vargas DY, Tyagi S (2006) Stochastic mRNA synthesis in mammalian cells. PLoS Biol 4:e309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Raj A, Rifkin SA, Andersen E, van Oudenaarden A (2010) Variability in gene expression underlies incomplete penetrance. Nature 463:913–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Brunskill EW, Park JS, Chung E, Chen F, Magella B, Potter SS (2014) Single cell dissection of early kidney development: multilineage priming. Development 141:3093–3101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Karner CM, Chirumamilla R, Aoki S, Igarashi P, Wallingford JB, Carroll TJ (2009) Wnt9b signaling regulates planar cell polarity and kidney tubule morphogenesis. Nat Genet 41:793–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stark K, Vainio S, Vassileva G, McMahon AP (1994) Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 372:679–683

    Article  CAS  PubMed  Google Scholar 

  47. Kispert A, Vainio S, McMahon AP (1998) Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney. Development 125:4225–4234

    CAS  PubMed  Google Scholar 

  48. Tanigawa S, Wang H, Yang Y, Sharma N, Tarasova N, Ajima R, Yamaguchi TP, Rodriguez LG, Perantoni AO (2011) Wnt4 induces nephronic tubules in metanephric mesenchyme by a non-canonical mechanism. Dev Biol 352:58–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Capaldo CT, Macara IG (2007) Depletion of E-cadherin disrupts establishment but not maintenance of cell junctions in Madin-Darby canine kidney epithelial cells. Mol Biol Cell 18:189–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Johnson MH, Maro B, Takeichi M (1986) The role of cell adhesion in the synchronization and orientation of polarization in 8-cell mouse blastomeres. J Embryol Exp Morpho 93:239–255

  51. Mammoto T, Mammoto A, Torisawa YS, Tat T, Gibbs A, Derda R, Mannix R, de Bruijn M, Yung CW, Huh D, Ingber DE (2011) Mechanochemical control of mesenchymal condensation and embryonic tooth organ formation. Dev Cell 21:758–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rodriguez-Fraticelli AE, Auzan M, Alonso MA, Bornens M, Martin-Belmonte F (2012) Cell confinement controls centrosome positioning and lumen initiation during epithelial morphogenesis. J Cell Biol 198:1011–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dahl U, Sjodin A, Larue L, Radice GL, Cajander S, Takeichi M, Kemler R, Semb H (2002) Genetic dissection of cadherin function during nephrogenesis. Mol Cell Biol 22:1474–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mah SP, Saueressig H, Goulding M, Kintner C, Dressler GR (2000) Kidney development in cadherin-6 mutants: delayed mesenchyme-to-epithelial conversion and loss of nephrons. Dev Biol 223:38–53

    Article  CAS  PubMed  Google Scholar 

  55. Cho EA, Patterson LT, Brookhiser WT, Mah S, Kintner C, Dressler GR (1998) Differential expression and function of cadherin-6 during renal epithelium development. Development 125:803–812

    CAS  PubMed  Google Scholar 

  56. Karner CM, Das A, Ma Z, Self M, Chen C, Lum L, Oliver G, Carroll TJ (2011) Canonical Wnt9b signaling balances progenitor cell expansion and differentiation during kidney development. Development 138:1247–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Valerius MT, McMahon AP (2008) Transcriptional profiling of Wnt4 mutant mouse kidneys identifies genes expressed during nephron formation. Gene Expr Patterns 8:297–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Marciano DK, Brakeman PR, Lee CZ, Spivak N, Eastburn DJ, Bryant DM, Beaudoin GM 3rd, Hofmann I, Mostov KE, Reichardt LF (2011) p120 catenin is required for normal renal tubulogenesis and glomerulogenesis. Development 138:2099–2109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Harding MJ, McGraw HF, Nechiporuk A (2014) The roles and regulation of multicellular rosette structures during morphogenesis. Development 141:2549–2558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ekblom P (1981) Formation of basement membranes in the embryonic kidney: an immunohistological study. J Cell Biol 91:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Miner JH (1998) Developmental biology of glomerular basement membrane components. Curr Opin Nephrol Hypertens 7:13–19

    Article  CAS  PubMed  Google Scholar 

  62. Ekblom P, Alitalo K, Vaheri A, Timpl R, Saxen L (1980) Induction of a basement membrane glycoprotein in embryonic kidney: possible role of laminin in morphogenesis. Proc Natl Acad Sci U S A 77:485–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Saxen L (1987) Organogenesis of the kidney. Cambridge University Press, New York

    Book  Google Scholar 

  64. Bryant DM, Roignot J, Datta A, Overeem AW, Kim M, Yu W, Peng X, Eastburn DJ, Ewald AJ, Werb Z, Mostov KE (2014) A molecular switch for the orientation of epithelial cell polarization. Dev Cell 31:171–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kao RM, Vasilyev A, Miyawaki A, Drummond IA, McMahon AP (2012) Invasion of distal nephron precursors associates with tubular interconnection during nephrogenesis. J Am Soc Nephrol 23:1682–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Deng W, Nies F, Feuer A, Bocina I, Oliver D, Jiang D (2013) Anion translocation through an Slc26 transporter mediates lumen expansion during tubulogenesis. Proc Natl Acad Sci U S A 110:14972–14977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bagnat M, Navis A, Herbstreith S, Brand-Arzamendi K, Curado S, Gabriel S, Mostov K, Huisken J, Stainier DY (2010) Cse1l is a negative regulator of CFTR-dependent fluid secretion. Curr Biol 20:1840–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li H, Findlay IA, Sheppard DN (2004) The relationship between cell proliferation, Cl- secretion, and renal cyst growth: a study using CFTR inhibitors. Kidney Int 66:1926–1938

    Article  CAS  PubMed  Google Scholar 

  69. Devuyst O, Burrow CR, Schwiebert EM, Guggino WB, Wilson PD (1996) Developmental regulation of CFTR expression during human nephrogenesis. Am J Physiol 271:F723–F735

    CAS  PubMed  Google Scholar 

  70. Aue A, Hinze C, Walentin K, Ruffert J, Yurtdas Y, Werth M, Chen W, Rabien A, Kilic E, Schulzke JD, Schumann M, Schmidt-Ott KM (2015) A grainyhead-like 2/ovo-like 2 pathway regulates renal epithelial barrier function and lumen expansion. J Am Soc Nephrol 26:2704–2715

  71. Brose K, Bland KS, Wang KH, Arnott D, Henzel W, Goodman CS, Tessier-Lavigne M, Kidd T (1999) Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 96:795–806

    Article  CAS  PubMed  Google Scholar 

  72. Kidd T, Bland KS, Goodman CS (1999) Slit is the midline repellent for the robo receptor in Drosophila. Cell 96:785–794

    Article  CAS  PubMed  Google Scholar 

  73. Strilic B, Kucera T, Eglinger J, Hughes MR, McNagny KM, Tsukita S, Dejana E, Ferrara N, Lammert E (2009) The molecular basis of vascular lumen formation in the developing mouse aorta. Dev Cell 17:505–515

    Article  CAS  PubMed  Google Scholar 

  74. Strilic B, Eglinger J, Krieg M, Zeeb M, Axnick J, Babal P, Muller DJ, Lammert E (2010) Electrostatic cell-surface repulsion initiates lumen formation in developing blood vessels. Curr Biol 20:2003–2009

    Article  CAS  PubMed  Google Scholar 

  75. Takeda T, Go WY, Orlando RA, Farquhar MG (2000) Expression of podocalyxin inhibits cell-cell adhesion and modifies junctional properties in Madin-Darby canine kidney cells. Mol Biol Cell 11:3219–3232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Orlando RA, Takeda T, Zak B, Schmieder S, Benoit VM, McQuistan T, Furthmayr H, Farquhar MG (2001) The glomerular epithelial cell anti-adhesin podocalyxin associates with the actin cytoskeleton through interactions with ezrin. J Am Soc Nephrol 12:1589–1598

    CAS  PubMed  Google Scholar 

  77. Schmieder S, Nagai M, Orlando RA, Takeda T, Farquhar MG (2004) Podocalyxin activates RhoA and induces actin reorganization through NHERF1 and Ezrin in MDCK cells. J Am Soc Nephrol 15:2289–2298

    Article  CAS  PubMed  Google Scholar 

  78. Takeda T, McQuistan T, Orlando RA, Farquhar MG (2001) Loss of glomerular foot processes is associated with uncoupling of podocalyxin from the actin cytoskeleton. J Clin Invest 108:289–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Meder D, Shevchenko A, Simons K, Fullekrug J (2005) Gp135/podocalyxin and NHERF-2 participate in the formation of a preapical domain during polarization of MDCK cells. J Cell Biol 168:303–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kerjaschki D, Sharkey DJ, Farquhar MG (1984) Identification and characterization of podocalyxin--the major sialoprotein of the renal glomerular epithelial cell. J Cell Biol 98:1591–1596

    Article  CAS  PubMed  Google Scholar 

  81. Nielsen JS, McNagny KM (2009) CD34 is a key regulator of hematopoietic stem cell trafficking to bone marrow and mast cell progenitor trafficking in the periphery. Microcirculation 16:487–496

    Article  CAS  PubMed  Google Scholar 

  82. Doyonnas R, Kershaw DB, Duhme C, Merkens H, Chelliah S, Graf T, McNagny KM (2001) Anuria, omphalocele, and perinatal lethality in mice lacking the CD34-related protein podocalyxin. J Exp Med 194:13–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Georgas K, Rumballe B, Valerius MT, Chiu HS, Thiagarajan RD, Lesieur E, Aronow BJ, Brunskill EW, Combes AN, Tang D, Taylor D, Grimmond SM, Potter SS, McMahon AP, Little MH (2009) Analysis of early nephron patterning reveals a role for distal RV proliferation in fusion to the ureteric tip via a cap mesenchyme-derived connecting segment. Dev Biol 332:273–286

    Article  CAS  PubMed  Google Scholar 

  84. Sawyer JK, Choi W, Jung KC, He L, Harris NJ, Peifer M (2011) A contractile actomyosin network linked to adherens junctions by Canoe/afadin helps drive convergent extension. Mol Biol Cell 22:2491–2508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Recuenco MC, Ohmori T, Tanigawa S, Taguchi A, Fujimura S, Conti MA, Wei Q, Kiyonari H, Abe T, Adelstein RS, Nishinakamura R (2015) Nonmuscle myosin II regulates the morphogenesis of metanephric mesenchyme-derived immature nephrons. J Am Soc Nephrol 26:1081–1091

    Article  CAS  PubMed  Google Scholar 

  86. Bertet C, Sulak L, Lecuit T (2004) Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature 429:667–671

    Article  CAS  PubMed  Google Scholar 

  87. Vogler G, Liu J, Iafe TW, Migh E, Mihaly J, Bodmer R (2014) Cdc42 and formin activity control non-muscle myosin dynamics during Drosophila heart morphogenesis. J Cell Biol 206:909–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lienkamp SS, Liu K, Karner CM, Carroll TJ, Ronneberger O, Wallingford JB, Walz G (2012) Vertebrate kidney tubules elongate using a planar cell polarity-dependent, rosette-based mechanism of convergent extension. Nat Genet 44:1382–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Castelli M, Boca M, Chiaravalli M, Ramalingam H, Rowe I, Distefano G, Carroll T, Boletta A (2013) Polycystin-1 binds Par3/aPKC and controls convergent extension during renal tubular morphogenesis. Nat Commun 4:2658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Vasilyev A, Liu Y, Mudumana S, Mangos S, Lam PY, Majumdar A, Zhao J, Poon KL, Kondrychyn I, Korzh V, Drummond IA (2009) Collective cell migration drives morphogenesis of the kidney nephron. PLoS Biol 7:e9

    Article  PubMed  CAS  Google Scholar 

  91. Packard A, Georgas K, Michos O, Riccio P, Cebrian C, Combes AN, Ju A, Ferrer-Vaquer A, Hadjantonakis AK, Zong H, Little MH, Costantini F (2013) Luminal mitosis drives epithelial cell dispersal within the branching ureteric bud. Dev Cell 27:319–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Huebner RJ, Lechler T, Ewald AJ (2014) Developmental stratification of the mammary epithelium occurs through symmetry-breaking vertical divisions of apically positioned luminal cells. Development 141:1085–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Herwig L, Blum Y, Krudewig A, Ellertsdottir E, Lenard A, Belting HG, Affolter M (2011) Distinct cellular mechanisms of blood vessel fusion in the zebrafish embryo. Curr Biol 21:1942–1948

    Article  CAS  PubMed  Google Scholar 

  94. Lenard A, Ellertsdottir E, Herwig L, Krudewig A, Sauteur L, Belting HG, Affolter M (2013) In vivo analysis reveals a highly stereotypic morphogenetic pathway of vascular anastomosis. Dev Cell 25:492–506

    Article  CAS  PubMed  Google Scholar 

  95. Hartman HA, Lai HL, Patterson LT (2007) Cessation of renal morphogenesis in mice. Dev Biol 310:379–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Germino GG, Somlo S, Weinstat-Saslow D, Reeders ST (1993) Positional cloning approach to the dominant polycystic kidney disease gene, PKD1. Kidney Int Suppl 39:S20–S25

    CAS  PubMed  Google Scholar 

  97. Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, Reynolds DM, Cai Y, Gabow PA, Pierides A, Kimberling WJ, Breuning MH, Deltas CC, Peters DJ, Somlo S (1996) PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272:1339–1342

    Article  CAS  PubMed  Google Scholar 

  98. Wilson PD, Sherwood AC, Palla K, Du J, Watson R, Norman JT (1991) Reversed polarity of Na(+) -K(+) -ATPase: mislocation to apical plasma membranes in polycystic kidney disease epithelia. Am J Physiol 260:F420–F430

    CAS  PubMed  Google Scholar 

  99. Whiteman EL, Fan S, Harder JL, Walton KD, Liu CJ, Soofi A, Fogg VC, Hershenson MB, Dressler GR, Deutsch GH, Gumucio DL, Margolis B (2014) Crumbs3 is essential for proper epithelial development and viability. Mol Cell Biol 34:43–56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Fedeles S, Gallagher AR (2013) Cell polarity and cystic kidney disease. Pediatr Nephrol 28:1161–1172

    Article  PubMed  Google Scholar 

  101. Huan Y, van Adelsberg J (1999) Polycystin-1, the PKD1 gene product, is in a complex containing E-cadherin and the catenins. J Clin Invest 104:1459–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Streets AJ, Wagner BE, Harris PC, Ward CJ, Ong AC (2009) Homophilic and heterophilic polycystin 1 interactions regulate E-cadherin recruitment and junction assembly in MDCK cells. J Cell Sci 122:1410–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Roitbak T, Surviladze Z, Tikkanen R, Wandinger-Ness A (2005) A polycystin multiprotein complex constitutes a cholesterol-containing signalling microdomain in human kidney epithelia. Biochem J 392:29–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Charron AJ, Nakamura S, Bacallao R, Wandinger-Ness A (2000) Compromised cytoarchitecture and polarized trafficking in autosomal dominant polycystic kidney disease cells. J Cell Biol 149:111–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pegtel DM, Ellenbroek SI, Mertens AE, van der Kammen RA, de Rooij J, Collard JG (2007) The Par-Tiam1 complex controls persistent migration by stabilizing microtubule-dependent front-rear polarity. Curr Biol 17:1623–1634

    Article  CAS  PubMed  Google Scholar 

  106. Yao G, Su X, Nguyen V, Roberts K, Li X, Takakura A, Plomann M, Zhou J (2014) Polycystin-1 regulates actin cytoskeleton organization and directional cell migration through a novel PC1-Pacsin 2-N-Wasp complex. Hum Mol Genet 23:2769–2779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wallace DP (2011) Cyclic AMP-mediated cyst expansion. Biochim Biophys Acta 1812:1291–1300

    Article  CAS  PubMed  Google Scholar 

  108. Davidow CJ, Maser RL, Rome LA, Calvet JP, Grantham JJ (1996) The cystic fibrosis transmembrane conductance regulator mediates transepithelial fluid secretion by human autosomal dominant polycystic kidney disease epithelium in vitro. Kidney Int 50:208–218

    Article  CAS  PubMed  Google Scholar 

  109. Yang B, Sonawane ND, Zhao D, Somlo S, Verkman AS (2008) Small-molecule CFTR inhibitors slow cyst growth in polycystic kidney disease. J Am Soc Nephrol 19:1300–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gattone VH 2nd, Wang X, Harris PC, Torres VE (2003) Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist. Nat Med 9:1323–1326

    Article  CAS  PubMed  Google Scholar 

  111. Torres VE, Chapman AB, Devuyst O, Gansevoort RT, Grantham JJ, Higashihara E, Perrone RD, Krasa HB, Ouyang J, Czerwiec FS, Investigators TT (2012) Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med 367:2407–2418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yu FX, Zhao B, Guan KL (2015) Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 163:811–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Happe H, van der Wal AM, Leonhard WN, Kunnen SJ, Breuning MH, de Heer E, Peters DJ (2011) Altered Hippo signalling in polycystic kidney disease. J Pathol 224:133–142

    Article  CAS  PubMed  Google Scholar 

  114. Saburi S, Hester I, Fischer E, Pontoglio M, Eremina V, Gessler M, Quaggin SE, Harrison R, Mount R, McNeill H (2008) Loss of Fat4 disrupts PCP signaling and oriented cell division and leads to cystic kidney disease. Nat Genet 40:1010–1015

    Article  CAS  PubMed  Google Scholar 

  115. Grzeschik NA, Parsons LM, Allott ML, Harvey KF, Richardson HE (2010) Lgl, aPKC, and Crumbs regulate the Salvador/Warts/Hippo pathway through two distinct mechanisms. Curr Biol 20:573–581

    Article  CAS  PubMed  Google Scholar 

  116. Nishio S, Tian X, Gallagher AR, Yu Z, Patel V, Igarashi P, Somlo S (2010) Loss of oriented cell division does not initiate cyst formation. J Am Soc Nephrol 21:295–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Grantham JJ, Geiser JL, Evan AP (1987) Cyst formation and growth in autosomal dominant polycystic kidney disease. Kidney Int 31:1145–1152

    Article  CAS  PubMed  Google Scholar 

  118. Elias BC, Das A, Parekh DV, Mernaugh G, Adams R, Yang Z, Brakebusch C, Pozzi A, Marciano DK, Carroll TJ, Zent R (2015) Cdc42 regulates epithelial cell polarity and cytoskeletal function during kidney tubule development. J Cell Sci 128:4293–4305

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank David Bryant, Tom Carroll, and the reviewers for comments on the manuscript. This review was supported by Basil O’Connor Starter Scholar Research Award no. 5-FY13-201 from the March of Dimes Foundation, Satellite Healthcare Coplon Grant, and NIH R01DK099478.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise K. Marciano.

Ethics declarations

Conflicts of interest

The author declares no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marciano, D.K. A holey pursuit: lumen formation in the developing kidney. Pediatr Nephrol 32, 7–20 (2017). https://doi.org/10.1007/s00467-016-3326-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-016-3326-4

Keywords

Navigation