Skip to main content

Advertisement

Log in

Prognostic factors and biomarkers of congenital obstructive nephropathy

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Congenital obstructive nephropathy (CON) is the leading cause of chronic kidney disease (CKD) in children. Anomalies of the urinary tract are often associated with abnormal nephrogenesis, which is compounded by obstructive injury and by maternal risk factors associated with low birth weight. Currently available fetal and postnatal imaging and analytes of amniotic fluid, urine, or blood lack predictive value. For ureteropelvic junction obstruction, biomarkers are needed for optimal timing of pyeloplasty; for posterior urethral valves, biomarkers of long-term prognosis and CKD are needed. The initial nephron number may be a major determinant of progression of CKD, and most patients with CON who progress to renal failure reach this point in adulthood, presumably compounded by episodes of acute kidney injury. Biomarkers of tubular injury may be of particular value in predicting the need for surgical intervention or in tracking progression of CKD, and must be adjusted for patient age. Discovery of new biomarkers may depend on “unbiased” proteomics, whereby patterns of urinary peptide fragments from patients with CON are analyzed in comparison to controls. Most promising are the analysis of urinary exosomes (restricting biomarkers to relevant tubular cells) and quantitative magnetic resonance imaging techniques allowing precise determination of nephron number and tubular mass. The greatest need is for large prospective multicenter studies with centralized biomarker sample repositories to follow patients with CON from fetal life through adulthood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Warady BA, Chadha V (2007) Chronic kidney disease in children: the global perspective. Pediatr Nephrol 22:1999–2009

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sanna-Cherchi S, Ravani P, Corbani V, Parodi S, Haupt R, Piaggio G, Degli Innocenti ML, Somenzi D, Trivelli A, Caridi G, Izzi C, Scolari F, Mattioli G, Allegri L, Ghiggeri GM (2009) Congenital anomalies of the kidney and urinary tract (CAKUT): longitudinal cohort study on renal outcome. Kidney Int 76:528–533

    Article  PubMed  Google Scholar 

  3. Wuhl E, van Stralen KJ, Verrina E, Bjerre A, Wanner C, Heaf JG, Zurriaga O, Hoitsma A, Niaudet P, Palsson R, Ravani P, Jager KJ, Schaefer F (2013) Timing and outcome of renal replacement therapy in patients with congenital malformations of the kidney and urinary tract. Clin J Am Soc Nephrol 8:67–74

    Article  PubMed  Google Scholar 

  4. Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95

    Article  Google Scholar 

  5. Sala P, Prefumo F, Pastorino D, Bufi D, Gaggero CR, Foppiano M, De Baiasio P (2014) Fetal surgery: an overview. Obstet Gynecol Surv 69:218–226

    Article  PubMed  Google Scholar 

  6. Waikar SS, Betensky RA, Bonventre JV (2009) Creatinine as the gold standard for kidney injury biomarker studies? Nephrol Dial Transplant 24:3263–3265

    Article  CAS  PubMed  Google Scholar 

  7. Woolf AS (2000) A molecular and genetic view of human renal and urinary tract malformations. Kidney Int 58:500–512

    Article  CAS  PubMed  Google Scholar 

  8. Karami H, Kazemi B, Jabbari M, Rahjoo T, Golshan A (2009) Mutations in intron 8 and intron 9 of Wilms’ tumor genes in members of family with ureteropelvic junction obstruction. Urology 74:116–118

    Article  PubMed  Google Scholar 

  9. Hostetter TH, Olson JL, Rennke HG, Venkatachalam MA, Brenner BM (1981) Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Am J Physiol 241:F85–F93

    CAS  PubMed  Google Scholar 

  10. Trnka P, Hiatt MJ, Tarantal AF, Matsell DG (2012) Congenital urinary tract obstruction: defining markers of developmental kidney injury. Pediatr Res 72:446–454

    Article  PubMed  Google Scholar 

  11. Thornhill BA, Chevalier RL (2012) Variable partial unilateral ureteral obstruction and its release in the neonatal and adult mouse. Methods Mol Biol 886:381–392

    Article  CAS  PubMed  Google Scholar 

  12. Forbes MS, Thornhill BA, Chevalier RL (2011) Proximal tubular injury and rapid formation of atubular glomeruli in mice with unilateral ureteral obstruction: a new look at an old model. Am J Physiol Ren Physiol 301:F110–F117

    Article  CAS  Google Scholar 

  13. Forbes MS, Thornhill BA, Minor JJ, Gordon KA, Galarreta CI, Chevalier RL (2012) Fight-or-flight: murine unilateral ureteral obstruction causes extensive proximal tubular degeneration, collecting duct dilatation, and minimal fibrosis. Am J Physiol Ren Physiol 303:F120–F129

    Article  CAS  Google Scholar 

  14. Chevalier RL, Charlton JR (2014) The human kidney at birth: structure and function in transition. In: Faa G, Fanos V (eds) Kidney development in renal pathology. Springer, New York, pp 49–58

    Google Scholar 

  15. Hartman HA, Lai HL, Patterson P (2007) Cessation of renal morphogenesis in mice. Dev Biol 310:379–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Forbes MS, Thornhill BA, Galarreta CI, Minor JJ, Gordon KA, Chevalier RL (2013) Chronic unilateral ureteral obstruction in the neonatal mouse delays maturation of both kidneys and leads to late formation of atubular glomeruli. Am J Physiol Ren Physiol 305:F1736–F1746

    Article  CAS  Google Scholar 

  17. Thornhill BA, Forbes MS, Marcinko ES, Chevalier RL (2007) Glomerulotubular disconnection in neonatal mice after relief of partial ureteral obstruction. Kidney Int 72:1103–1112

    Article  CAS  PubMed  Google Scholar 

  18. Chevalier RL (1984) Chronic partial ureteral obstruction in the neonatal guinea pig II: pressure gradients affecting glomerular filtration rate. Pediatr Res 18:1271–1277

    Article  CAS  PubMed  Google Scholar 

  19. Thornhill BA, Burt LA, Chen C, Forbes MS, Chevalier RL (2005) Variable chronic partial ureteral obstruction in the neonatal rat: a new model of ureteropelvic junction obstruction. Kidney Int 67:42–52

    Article  PubMed  Google Scholar 

  20. Sergio M, Galarreta CI, Thornhill BA, Forbes MS, Chevalier RL (2015) The fate of nephrons in congenital obstructive nephropathy: adult recovery is limited by nephron number. J Urol 194:1463–1472

    Article  PubMed  Google Scholar 

  21. Rosen S, Peters CA, Chevalier RL, Huang W-Y (2008) The kidney in congenital ureteropelvic junction obstruction: a spectrum from normal to nephrectomy. J Urol 179:1257–1263

    Article  PubMed  Google Scholar 

  22. Carmody JB, Charlton JR (2013) Short-term gestation, long-term risk: prematurity and chronic kidney disease. Pediatrics 131:1168–1179

    Article  PubMed  Google Scholar 

  23. Hsu CW, Yamamoto KT, Henry RK, De Roos AJ, Flynn JT (2014) Prenatal risk factors for childhood CKD. J Am Soc Nephrol 25:2105–2111

    Article  PubMed  PubMed Central  Google Scholar 

  24. Luyckx VA, Bertram JF, Brenner BM, Fall C, Hoy WE, Ozanne SE, Vikse BE (2013) Effect of fetal and child health on kidney development and long-term risk of hypertension and kidney disease. Lancet 382:273–283

    Article  PubMed  Google Scholar 

  25. Chevalier RL, Thornhill BA, Forbes MS, Kiley SC (2010) Mechanisms of renal injury and progression of renal disease in congenital obstructive nephropathy. Pediatr Nephrol 25:687–697

    Article  PubMed  Google Scholar 

  26. Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre JV (2002) Kidney injury molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int 62:237–244

    Article  CAS  PubMed  Google Scholar 

  27. Cost NG, Noh PH, Devarajan P, Ivancic V, Reddy PP, Minevich E, Bennett M, Haffner C, Schulte M, DeFoor WR (2013) Urinary NGAL levels correlate with differential renal function in patients with ureteropelvic junction obstrution undergoing pyeloplasty. J Urol 190:1462–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Caubet C, Lacroix C, Decramer S, Drube J, Ehrich JHH, Mischak H, Bascands JL, Schanstra JP (2010) Advances in urinary proteome analysis and biomarker discovery in pediatric renal disease. Pediatr Nephrol 25:27–35

    Article  PubMed  Google Scholar 

  29. Bates CM, Charlton JR, Ferris ME, Hildebrandt F, Hoshizaki DK, Warady BA, Moxey-Mims MM (2014) Pediatric kidney disease: tracking onset and improving clinical outcomes. Clin J Am Soc Nephrol 9:1141–1143

    Article  PubMed  PubMed Central  Google Scholar 

  30. Little MH, Brown D, Humphreys BD, McMahon AP, Miner JH, Sands JM, Weisz OA, Mullins C, Hoshizaki D (2014) Defining biology to understand disease. Clin J Am Soc Nephrol 9:809–811

    Article  PubMed  Google Scholar 

  31. Zhang Z, Quinlan J, Hoy W, Hughson MD, Lemire M, Hudson T, Hueber PA, Benjamin A, Roy A, Pascuet E, Goodyer M, Raju C, Houghton F, Bertram J, Goodyer P (2008) A common RET variant is associated with reduced newborn kidney size and function. J Am Soc Nephrol 19:2027–2034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chevalier RL (2011) Response to nephron loss in early development. In: Polin RA, Fox WW, Abman SH (eds) Fetal and neonatal physiology, 4th edn. Elsevier, Philadelphia, pp 1423–1428

    Chapter  Google Scholar 

  33. Madsen MG, Norregaard R, Palmfeldt J, Olsen LH, Frokiaer J, Jorgensen TM (2012) Urinary NGAL, cystatin C, 2-microglobulin, and osteopontin significance in hydronephrotic children. Pediatr Nephrol 27:2099–2106

    Article  PubMed  Google Scholar 

  34. Saceidi B, Koralkar R, Griffin RL, Halloran B, Ambalavanan N, Askenazi DJ (2015) Impact of gestational age, sex, and postnatal age on urine biomarkers in premature neonates. Pediatr Nephrol 30:2037–2044

    Article  Google Scholar 

  35. Alge JL, Arthur JM (2015) Biomarkers of AKI: a review of mechanistic relevance and potential therapeutic implications. Clin J Am Soc Nephrol 10:147–155

    Article  CAS  PubMed  Google Scholar 

  36. Smeets B, Boor P, Dijkman H, Sharma SV, Jirak P, Mooren F, Berger K, Bornemann J, Gelman IH, Floege J, van der Vlag J, Wetzels JF, Moeller MJ (2013) Proximal tubular cells contain a phenotypically distinct, scattered cell population involved in tubular regeneration. J Pathol 229:645–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Venkatachalam MA, Weinberg JM, Kriz W, Bidani AK (2015) Failed tubule recovery, AKI-CKD transition, and kidney disease progression. J Am Soc Nephrol 26:1765–1776

    Article  CAS  PubMed  Google Scholar 

  38. Schanstra JP, Zurbig P, Alkhalaf A, Argiles A, Bakker SJL, Beige J, Bilo HJG, Chatzikyrkou C, Dakna M, Dawson J, Delles C, Haller H, Haubitz M, Husi H, Jankowski J, Jerums G, Kleefstra N, Kuznetsova T, Maahs DM, Menne J, Mullen W, Ortiz A, Persson F, Rossing P, Ruggenenti P, Rychlik I, Serra AL, Siwy J, Snell-Bergeon J, Spasovski G, Staessen JA, Vlahou A, Mischak H, Vanholder R (2015) Diagnosis and prediction of CKD progression by assessment of urinary peptides. J Am Soc Nephrol 26(8):1999–2010

    Article  CAS  PubMed  Google Scholar 

  39. Mallik M, Watson AR (2008) Antenatally detected urinary tract abnromalities; more detection but less action. Pediatr Nephrol 23:897–904

    Article  PubMed  Google Scholar 

  40. Dos Santos J, Parekh RS, Piscione TD, Hassouna T, Figueroa V, Gonima P, Vargas I, Farhat W, Rosenblum ND (2015) A new grading system for the management of antenatal hydronephrosis. Clin J Am Soc Nephrol 10:1783–1790

    Article  PubMed  Google Scholar 

  41. Liu DB, Armstrong WR, Maizels M (2014) Hydronephrosis. Prenatal and postnatal management. Clin Perinatol 41:661–678

    Article  CAS  PubMed  Google Scholar 

  42. Conway JJ (1992) The “well tempered” diuretic renogram: a standard method to examine the asymptomatic neonate with hydronephrosis or hydroureteronephrosis. J Nucl Med 33:2047–2051

    CAS  PubMed  Google Scholar 

  43. Peters CA (1995) Urinary tract obstruction in children. J Urol 154:1874–1883

    Article  CAS  PubMed  Google Scholar 

  44. Sarma D, Barua SK, Rajeev TP, Baruah SJ (2012) Correlation between differential renal function estimation using CT-based functional renal parenchymal volume and (99m)Tc-DTPA renal scan. Indian J Urol 28:414–417

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chevalier RL, Thornhill BA, Chang AY (2000) Unilateral ureteral obstruction in neonatal rats leads to renal insufficiency in adulthood. Kidney Int 58:1987–1995

    Article  CAS  PubMed  Google Scholar 

  46. Cassart M, Massez A, Metens T, Rypens F, Lambot MA, Hall M, Avni FE (2004) Complementary role of MRI after sonography in assessing bilateral urinary tract anomalies in the fetus. AJR Am J Roentgenol 182:689–695

    Article  PubMed  Google Scholar 

  47. Clermont MJ, Brion LP, Schwartz GJ (1986) Reliability of plasma creatinine measurement in infants and children. Clin Pediatr (Phila) 25:569–572

    Article  CAS  Google Scholar 

  48. Guignard J-P, Drukker A (1999) Why do newborn infants have a high plasma creatinine? Pediatrics 103:e49

    Article  CAS  PubMed  Google Scholar 

  49. Mandell J, Peters CA, Estroff JA, Allred EN, Benacerraf BR (1993) Human fetal compensatory renal growth. J Urol 150:790–792

    CAS  PubMed  Google Scholar 

  50. Simoes e Silva AC, Valerio FC, Vasconcelos MA, Miranda DM, Oliveira EA (2013) Interactions between cytokines, congenital anomaliesof kidney and urinary tract and chronic kidney disease. Clin Dev Immunol 2013:Article ID 597920. doi:10.1155/2013/597920

  51. Taha MA, Shokeir AA, Osman HG, El-Aziz A, El-Aziz A, Farahat SE (2007) Pelvi-ureteric junction obstruction in children: the role of urinary transfoming growth factor-beta 1 and epidermal growth factor. BJU Int 99:899–903

    Article  PubMed  Google Scholar 

  52. Taranta-Janusz K, Wasilewska A, Debek W, Fitonowicz R, Michaluk-Skutnik J (2013) Urinary angiotensinogen as a novel marker of obstructive nephropathy in children. Acta Paediatr 102:e429–e433

    Article  CAS  PubMed  Google Scholar 

  53. Grandaliano G, Gesualdo L, Bartoli F, Ranieri E, Monno R, Leggio A, Paradies G, Caldarulo E, Infante B, Schena FP (2000) MCP-1 and EGF renal expression and urine excretion in human congenital obstructive nephropathy. Kidney Int 58:182–192

    Article  CAS  PubMed  Google Scholar 

  54. Bartoli F, Penza R, Aceto G, Niglio F, D’Addato O, Pastore V, Campanella V, Magaldi S, Lasalandra C, Di BG, Gesualdo L (2011) Urinary epidermal growth factor, monocyte chemotactic protein-1, and 2-microglobulin in children with ureteropelvic junction obstruction. J Pediatr Surg 46:530–536

    Article  PubMed  Google Scholar 

  55. Madsen MG, Norregaard R, Palmfeldt J, Olsen LH, Frokiaer J, Jorgensen TM (2012) Epidermal growth factor and monocyte chemotactic peptide-1: potential biomarkers of urinary tract obstruction in children with hydronephrosis. J Pediatr Urol 9:838–845

    Article  PubMed  Google Scholar 

  56. Mohammadjafari H, Rafiei A, Kosaryan M, Yeganeh Y, Hosseinimehr SJ (2014) Determination of the severity of ureteropelvic junction obstruction using urinary epidermal growth factor and kidney injury molecule-1 levels. Biomark Med 20:1199–1206

    Article  Google Scholar 

  57. Taranta-Janusz K, Wasilewska A, Debek W, Waszkiewicz-Stojda M (2012) Urinary cytokine profiles in unilateral congenital hydronephrosis. Pediatr Nephrol 27:2107–2113

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wasilewska A, Taranta-Janusz K, Debek W, Zoch-Zwierz W, Kuroczycka-Saniutycz E (2011) KIM-1 and NGAL: new markers of obstructive nephropathy. Pediatr Nephrol 26:579–586

    Article  PubMed  PubMed Central  Google Scholar 

  59. Decramer S, Wittke S, Mischak H, Zurbig P, Walden M, Bouissou F, Bascands JL, Schanstra JP (2006) Predicting the clinical outcome of congenital unilateral ureteropelvic junction obstruction in newborn by urinary proteome analysis. Nat Med 12:398–400

    Article  CAS  PubMed  Google Scholar 

  60. Drube J, Zurbig P, Schiffer E, Lau E, Ure B, Bluer S, Kirschstein M, Pape L, Decramer S, Bascands JL, Schanstra JP, Mischak H, Ehrich JHH (2010) Urinary proteome analysis identifies infants but not older children requiring pyeloplasty. Pediatr Nephrol 25:1673–1678

    Article  PubMed  Google Scholar 

  61. Bandin F, Siwy J, Breuil B, Mischak H, Bascands JL, Decramer S, Schanstra JP (2012) Urinary proteome analysis at 5-year followup of patients with nonoperated ureteropelvic junction obstruction suggests ongoing kidney remodeling. J Urol 187:1006–1011

    Article  CAS  PubMed  Google Scholar 

  62. Mesrobian HGO, Kryger JV, Groth TW, Fiscus GE, Mirza SP (2013) Urinary proteome analysis in patients with stable SFU grade 4 ureteropelvic junction obstruction differs from normal. Urology 82:745.e1–745.e10

    Google Scholar 

  63. Morris RK, Malin GL, Khan KS, Kilby MD (2009) Antenatal ultrasound to predict postnatal renal function in congenital lower urinary tract obstruction: systematic review of test accuracy. BJOG 116:1290–1299

    Article  CAS  PubMed  Google Scholar 

  64. Bernardes LS, Aksnes G, Lortat-Jacob S, Benachi A (2011) Ultrasound evaluation of prognosis in fetuses with posterior urethral valves. J Pediatr Surg 46:1412–1418

    Article  PubMed  Google Scholar 

  65. Yiee J, Wilcox D (2008) Abnormalities of the fetal bladder. Semin Fetal Neonatal Med 13:164–170

    Article  PubMed  Google Scholar 

  66. Maizels M, Alpert SA, Houston JTB, Sabbagha RE, Parilla BV, MacGregor SN (2004) Fetal bladder sagittal length: a simple monitor to assess normal and enlarged fetal bladder size, and forecast clinical outcome. J Urol 172:1995–1999

    Article  PubMed  Google Scholar 

  67. Pulido JE, Furth SL, Zderic SA, Canning DA, Tasian GE (2014) Renal parenchymal area and risk of ESRD in boys with posterior urethral valves. Clin J Am Soc Nephrol 9:499–505

    Article  PubMed  Google Scholar 

  68. Chevalier RL (2012) Obstructive uropathy: assessment of renal function in the fetus. In: Oh W, Guignard J-P, Baumgart S (eds) Nephrology and fluid/electrolyte physiology: neonatology questions and controversies, 2nd edn. Elsevier-Saunders, Philadelphia, pp 335–359

    Chapter  Google Scholar 

  69. Nicolini U, Fisk NM, Rodeck CH, Beacham J (1992) Fetal urine biochemistry: an index of renal maturation and dysfunction. Br J Obstet Gynaecol 99:46–50

    Article  CAS  PubMed  Google Scholar 

  70. Morris RK, Quinlan-Jones E, Kilby MD, Khan KS (2007) Systematic review of accuracy of fetal urine analysis to predict poor postnatal renal function in cases of congenital urinary tract obstruction. Prenat Diagn 27:900–911

    Article  CAS  PubMed  Google Scholar 

  71. Morris RK, Malin GL, Khan KS, Kilby MD (2010) Systematic review of the effectiveness of antenatal intervention for the treatment of congenital lower urinary tract obstruction. BJOG 117:382–390

    Article  CAS  PubMed  Google Scholar 

  72. Klein J, Lacroix C, Caubet C, Siwy J, Zurbig P, Dakna M, Muller F, Breuil B, Stalmach A, Mullen W, Mischak H, Bandin F, Monsarrat B, Bascands JL, Decramer S, Schanstra JP (2013) Fetal urinary peptides to predict postnatal outcome of renal disease in fetuses with posterior urethral valves (PUV). Sci Transl Med 5:1–10

    Article  Google Scholar 

  73. Trnka P, Ivanova L, Hiatt MJ, Matsell DG (2012) Urinary biomarkers in obstructive nephropathy. Clin J Am Soc Nephrol 7:1567–1575

    Article  PubMed  PubMed Central  Google Scholar 

  74. Salih M, Zietse R, Hoorn EJ (2014) Urinary extracellular vesicles and the kidney: biomarkers and beyond. Am J Physiol Ren Physiol 306:F1251–F1259

    Article  CAS  Google Scholar 

  75. Keller S, Rupp C, Stoeck A, Runz S, Fogel M, Lugert S, Hager HD, Abdel-Bakky MS, Gutwein P, Altevogt P (2007) CD24 is a marker of exosomes secreted into urine and amniotic fluid. Kidney Int 72:1095–1102

    Article  CAS  PubMed  Google Scholar 

  76. Hohenfellner K, Wingen A-M, Nauroth O, Wuhl E, Mehls O, Schaefer F (2001) Impact of ACE I/D gene polymorphism on congenital renal malformations. Pediatr Nephrol 16:356–361

    Article  CAS  PubMed  Google Scholar 

  77. Noiri E, Satoh H, Taguchi J, Brodsky WV, Nakao A, Ogawa Y, Nishijima S, Yokomizo T, Tokunaga K, Fujita T (2002) Association of eNOS Glu298Asp polymorphism with end-stage renal disease. Hypertension 40:535–540

    Article  CAS  PubMed  Google Scholar 

  78. Hughson MD, Farris AB, Douglas-Denton R, Hoy WE, Bertram JF (2003) Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int 63:2113–2122

    Article  PubMed  Google Scholar 

  79. Bueters RRG, Van de Kar NCAJ, Schreuder MF (2013) Adult renal size is not a suitable marker for nephron numbers: an individual patient data meta-analysis. Kidney Blood Press Res 37:540–546

    Article  PubMed  Google Scholar 

  80. Beeman SC, Cullen-McEwen LA, Puelles VG, Zhang M, Wu T, Baldelomar EJ, Dowling J, Charlton JR, Forbes MS, Ng A, Wu Q, Armitage JA, Egan GF, Bertram JF, Bennett KM (2014) MRI-based glomerular morphology and pathology in whole human kidneys. Am J Physiol Ren Physiol 306:F381–F390

    Article  Google Scholar 

  81. Forbes MS, Thornhill BA, Galarreta CI, Chevalier RL (2015) A population of mitochondrion-rich cells in pars recta of mouse kidney. Cell Tissue Res. doi:10.1007/s00441-015-2273-x

    PubMed  Google Scholar 

  82. Ivanova L, Hiatt MJ, Yoder MC, Tarantal AF, Matsell DG (2010) Ontogeny of CD24 in the human kidney. Kidney Int 77:1123–1131

    Article  CAS  PubMed  Google Scholar 

  83. Hiatt MJ, Ivanova L, Toran N, Tarantal AF, Matsell DG (2010) Remodeling of the fetal collecting duct epithelium. Am J Pathol 176:630–637

    Article  PubMed  PubMed Central  Google Scholar 

  84. Zurbig P, Decramer S, Dakna M, Jantos J, Good DM, Coon JJ, Bandin F, Mischak H, Bascands JL, Schanstra JP (2009) The human urinary proteome reveals high similarity between kidney aging and chronic kidney disease. Proteomics 9:2108–2117

    Article  PubMed  PubMed Central  Google Scholar 

  85. Rappaport SM, Smith MT (2010) Environment and disease risks. Science 330:460–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Chevalier.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chevalier, R.L. Prognostic factors and biomarkers of congenital obstructive nephropathy. Pediatr Nephrol 31, 1411–1420 (2016). https://doi.org/10.1007/s00467-015-3291-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-015-3291-3

Keywords

Navigation