Skip to main content

Advertisement

Log in

MMP-1 and -3 haplotype is associated with congenital anomalies of the kidney and urinary tract

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Congenital anomalies of the kidney and urinary tract (CAKUT) are a common cause of progressive chronic kidney disease that may lead to end-stage renal disease and renal replacement therapy in childhood. Altered expression or activity of matrix metalloproteinases (MMPs) have been found in CAKUT. The MMP-1, -3, and -8 polymorphisms studied here are located in the gene promoters and alter expression. Our aim was to investigate associations of MMP polymorphisms, solely and in haplotypes, with CAKUT in children.

Methods

A case–control study with 101 pediatric patients and 281 controls was performed. The MMP-1 (-1607 1G/2G), -3 (5A/6A), and -8 (-799 C/T) genotypes were determined by PCR–restriction fragment length polymorphism.

Results

We found statistically significant associations of MMP-3 5A/6A polymorphism (p < 0.0001) and 1G−1607-6A haplotype, with no preferences for MMP-8 -799C or T alleles, with CAKUT (OR = 2.93, 95 % CI 1.43–5.98, adjusted for gender, p = 0.003) and with obstructive uropathies in a subgroup of patients (OR = 4.57, 95 % CI 2.74–7.61, adjusted for gender, p < 0.0001).

Conclusions

MMP-3 genotypes and MMP-3 and -1 haplotypes encompassing either MMP-8 -799C or T alleles were associated with CAKUT and obstructive uropathies in pediatric patients. Still, functional and association studies are needed to elucidate evident roles of MMPs in CAKUT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Loane M, Dolk H, Kelly A, Teljeur C, Greenlees R, Densem J, EUROCAT Working Group (2011) Paper 4: EUROCAT statistical monitoring: identification and investigation of ten year trends of congenital anomalies in Europe. Birth Defects Res A Clin Mol Teratol 91:S31–S43

    Article  PubMed  CAS  Google Scholar 

  2. Lenz O, Elliot SJ, Stetler-Stevenson WG (2000) Matrix metalloproteinases in renal development and disease. J Am Soc Nephrol 11:574–581

    PubMed  CAS  Google Scholar 

  3. Kadono Y, Shibahara K, Namiki M, Watanabe Y, Seiki M, Sato H (1998) Membrane type 1-matrix metalloproteinase is involved in the formation of hepatocyte growth factor/scatter factor-induced branching tubules in Madin–Darby canine kidney epithelial cells. Biochem Biophys Res Commun 251:681–687

    Article  PubMed  CAS  Google Scholar 

  4. Pohl M, Sakurai H, Bush KT, Nigam SK (2000) Matrix metalloproteinases and their inhibitors regulate in vitro ureteric bud branching morphogenesis. Am J Physiol Renal Physiol 279:F891–F900

    PubMed  CAS  Google Scholar 

  5. Engelmyer E, van Goor H, Edwards DR, Diamond JR (1995) Differential mRNA expression of renal cortical tissue inhibitor of metalloproteinase-1, -2, and -3 in experimental hydronephrosis. J Am Soc Nephrol 5:1675–1683

    PubMed  CAS  Google Scholar 

  6. Sharma AK, Mauer SM, Kim Y, Michael AF (1995) Altered expression of matrix metalloproteinase-2, TIMP, and TIMP-2 in obstructive nephropathy. J Lab Clin Med 125:754–761

    PubMed  CAS  Google Scholar 

  7. Kaya C, Bogaert G, de Ridder D, Schwentner C, Fritsch H, Oswald J, Radmayr C (2010) Extracellular matrix degradation and reduced neural density in children with intrinsic ureteropelvic junction obstruction. Urology 761:185–189

    Article  Google Scholar 

  8. Hayashi K, Sasamura H, Ishiguro K, Sakamaki Y, Azegami T, Itoh H (2010) Regression of glomerulosclerosis in response to transient treatment with angiotensin II blockers is attenuated by blockade of matrix metalloproteinase-2. Kidney Int 781:69–78

    Article  CAS  Google Scholar 

  9. Affara M, Dunmore BJ, Sanders DA, Johnson N, Print CG, Charnock-Jones DS (2011) MMP1 bimodal expression and differential response to inflammatory mediators is linked to promoter polymorphisms. BMC Genomics 12:43

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Medley TL, Kingwell BA, Gatzka CD, Pillay P, Cole TJ (2003) Matrix metalloproteinase-3 genotype contributes to age-related aortic stiffening through modulation of gene and protein expression. Circ Res 92:1254–1256

    Article  PubMed  CAS  Google Scholar 

  11. Djurić T, Stanković A, Končar I, Radak D, Davidović L, Alavantić D, Zivkovic M (2011) Association of MMP-8 promoter gene polymorphisms with carotid atherosclerosis: preliminary study. Atherosclerosis 219:673–678

    Article  PubMed  CAS  Google Scholar 

  12. Pendas AM, Santamaria I, Alvarez MV, Pritchard M, Lopez-Otin C (1996) Fine physical mapping of the human matrix metalloproteinase genes clustered on chromosome 11q22.3. Genomics 37:266–268

    Article  PubMed  CAS  Google Scholar 

  13. Dupont WD, Plummer WD (1990) Power and sample size calculations: a review and computer program. Control Clin Trials 11:116–128

    Article  PubMed  CAS  Google Scholar 

  14. Menashe I, Rosenberg PS, Chen BE (2008) PGA, power calculator for case-control genetic association analyses. BMC Genet 9:36

    Article  PubMed Central  PubMed  Google Scholar 

  15. Djurić T, Stojković L, Zivković M, Končar I, Stanković A, Djordjević A, Alavantić D (2012) Matrix metalloproteinase-1 promoter genotypes and haplotypes are associated with carotid plaque presence. Clin Biochem 45:1353–1356

    Article  PubMed  CAS  Google Scholar 

  16. Djuric T, Zivkovic M, Mecanin S, Stankovic A, Alavantic D (2005) Endothelial NOS G894T and MMP-3 5A/6A gene polymorphisms and hypertension in Serbian population. J Clin Lab Anal 19:241–246

    Article  PubMed  CAS  Google Scholar 

  17. Carter KW, McCaskie PA, Palmer LJ (2006) JLIN: a JAVA-based linkage disequilibrium plotter. BMC Bioinforma 7:60

    Article  CAS  Google Scholar 

  18. Tregouet DA, Garelle V (2007) A new JAVA interface implementation of THESIAS: testing haplotype effects in association studies. Bioinformatics 23:1038–1039

    Article  PubMed  CAS  Google Scholar 

  19. Tregouet DA, Escolano S, Tiret L, Mallet A, Golmard JL (2004) A new algorithm for haplotype-based association analysis: the stochastic-EM algorithm. Ann Hum Genet 68:165–177

    Article  PubMed  CAS  Google Scholar 

  20. Ghilardi G, Biondi ML, DeMonti M, Turri O, Guagnellini E, Scorza R (2002) Matrix metalloproteinase-1 and matrix metalloproteinase-3 gene promoter polymorphisms are associated with carotid artery stenosis. Stroke 33:2408–2412

    Article  PubMed  CAS  Google Scholar 

  21. Humphries S, Bauters C, Meirhaeghe A, Luong L, Bertrand M, Amouyel P (2002) The 5A6A polymorphism in the promoter of the stromelysin-1 (MMP3) gene as a risk factor for restenosis. Eur Heart J 23:721–725

    Article  PubMed  CAS  Google Scholar 

  22. Ye S, Gale CR, Martyn CN (2003) Variation in the matrix metalloproteinase-1 gene and risk of coronary heart disease. Eur Heart J 24:1668–1671

    Article  PubMed  CAS  Google Scholar 

  23. Pradhan-Palikhe P, Pussinen PJ, Vikatmaa P, Palikhe A, Kivimäki AS, Lepäntalo M, Salo T, Sorsa T (2012) Single-nucleotide polymorphism -799C/T in matrix metalloproteinase-8 promoter region in arterial disease. Innate Immun 18:511–517

    Article  PubMed  CAS  Google Scholar 

  24. Hanna MK, Jeffs RD, Sturgess JM, Barkin M (1976) Ureteral structure and ultrastructure. Part II. Congenital ureteropelvic junction obstruction and primary obstructive megaureter. J Urol 116:725–730

    PubMed  CAS  Google Scholar 

  25. Lee BR, Silver RI, Partin AW, Epstein JI, Gearhart JP (1998) A quantitative histologic analysis of collagen subtypes: the primary obstructed and refluxing megaureter of childhood. Urology 51:820–823

    Article  PubMed  CAS  Google Scholar 

  26. Hasty KA, Jeffrey JJ, Hibbs MS, Welgus HG (1987) The collagen substrate specificity of human neutrophil collagenase. J Biol Chem 262:10048–10052

    PubMed  CAS  Google Scholar 

  27. Murphy G, Cockett MI, Stephens PE, Smith BJ, Docherty AJ (1987) Stromelysin is an activator of procollagenase. A study with natural and recombinant enzymes. Biochem J 248:265–268

    PubMed Central  PubMed  CAS  Google Scholar 

  28. Knäuper V, Wilhelm SM, Seperack PK, DeClerck YA, Langley KE, Osthues A, Tschesche H (1993) Direct activation of human neutrophil procollagenase by recombinant stromelysin. Biochem J 295:581–586

    PubMed Central  PubMed  Google Scholar 

  29. Sakai T, Larsen M, Yamada KM (2003) Fibronectin requirement in branching morphogenesis. Nature 423:876–881

    Article  PubMed  CAS  Google Scholar 

  30. Fukuda Y, Masuda Y, Kishi J, Hashimoto Y, Hayakawa T, Nogawa H, Nakanishi Y (1988) The role of interstitial collagens in cleft formation of mouse embryonic submandibular gland during initial branching. Development 103:259–267

    PubMed  CAS  Google Scholar 

  31. Rebustini IT, Patel VN, Stewart JS, Layvey A, Georges-Labouesse E, Miner JH, Hoffman MP (2007) Laminin alpha5 is necessary for submandibular gland epithelial morphogenesis and influences FGFR expression through beta1 integrin signaling. Dev Biol 308:15–29

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Serbian Government Research Grant OI175085.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Stankovic.

Additional information

Tamara Djuric and Maja Zivkovic contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Djuric, T., Zivkovic, M., Milosevic, B. et al. MMP-1 and -3 haplotype is associated with congenital anomalies of the kidney and urinary tract. Pediatr Nephrol 29, 879–884 (2014). https://doi.org/10.1007/s00467-013-2699-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-013-2699-x

Keywords

Navigation