Skip to main content
Log in

BMP signaling and its modifiers in kidney development

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The kidney develops through mutual interactions between the metanephric mesenchyme and the ureteric bud, the former of which contains nephron progenitors that give rise to glomeruli and renal tubules. Bone morphogenetic protein (BMP) signaling and its modifiers play important roles in many steps of kidney development. BMP4 inhibits ureteric bud attraction, and the BMP antagonist Gremlin is essential for the initial stage of ureteric budding. During mid-gestation, BMP7 maintains the nephron progenitors and, at the same time, sensitizes them to the ureteric bud-derived differentiation signal. Crossveinless2 is a pro-BMP factor, and its absence leads to kidney hypoplasia. After birth, when nephron progenitors have disappeared, Dullard, a phosphatase that inactivates BMP receptors, keeps BMP signaling at an appropriate level. Deletion of Dullard results in excessive BMP signaling and apoptosis of the postnatal nephrons. In this review I discuss the similarities and differences of BMP functions in kidney development, as well as in diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dressler GR (2006) The cellular basis of kidney development. Annu Rev Cell Dev Biol 22:509–529

    Article  CAS  PubMed  Google Scholar 

  2. Kobayashi A, Valerius MT, Mugford JW, Carroll TJ, Self M, Oliver G, McMahon AP (2008) Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 3:169–181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Boyle S, Misfeldt A, Chandler KJ, Deal KK, Southard-Smith EM, Mortlock DP, Baldwin HS, de Caestecker M (2008) Fate mapping using Cited1-CreERT2 mice demonstrates that the cap mesenchyme contains self-renewing progenitor cells and gives rise exclusively to nephronic epithelia. Dev Biol 313:234–245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Srinivas S, Goldberg MR, Watanabe T, D’Agati V, al-Awqati Q, Costantini F (1999) Expression of green fluorescent protein in the ureteric bud of transgenic mice: a new tool for the analysis of ureteric bud morphogenesis. Dev Genet 24:241–251

    Article  CAS  PubMed  Google Scholar 

  5. Rumballe BA, Georgas KM, Combes AN, Ju AL, Gilbert T, Little MH (2011) Nephron formation adopts a novel spatial topology at cessation of nephrogenesis. Dev Biol 360:110–122

    CAS  PubMed  Google Scholar 

  6. Oxburgh L, Brown AC, Muthukrishnan SD, Fetting JL (2013) Bone morphogenetic protein signaling in nephron progenitor cells. Pediatr Nephrol. doi:10.1007/s00467-013-2589-2

    PubMed  Google Scholar 

  7. Pope JC, Brock JW, Adams MC, Stephens FD, Ichikawa I (1999) How they begin and how they end: classic and new theories for the development and deterioration of congenital anomalies of the kidney and urinary tract, CAKUT. J Am Soc Nephrol 10:2018–2028

    PubMed  Google Scholar 

  8. Miyazaki Y, Oshima K, Fogo A, Hogan BL, Ichikawa I (2000) Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J Clin Invest 105:863–873

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Kaku Y, Ohmori T, Kudo K, Fujimura S, Suzuki K, Evans SM, Kawakami Y, Nishinakamura R (2013) Islet1 Deletion causes kidney agenesis and hydroureter resembling CAKUT. J Am Soc Nephrol 24:1242–1249

    Article  CAS  PubMed  Google Scholar 

  10. Hartwig S, Bridgewater D, Di Giovanni V, Cain J, Mishina Y, Rosenblum ND (2008) BMP receptor ALK3 controls collecting system development. J Am Soc Nephrol 19:117–124

    Article  CAS  PubMed  Google Scholar 

  11. Blank U, Seto ML, Adams DC, Wojchowski DM, Karolak MJ, Oxburgh L (2008) An in vivo reporter of BMP signaling in organogenesis reveals targets in the developing kidney. BMC Dev Biol 8:86

    Article  PubMed Central  PubMed  Google Scholar 

  12. Michos O, Gonçalves A, Lopez-Rios J, Tiecke E, Naillat F, Beier K, Galli A, Vainio S, Zeller R (2007) Reduction of BMP4 activity by gremlin 1 enables ureteric bud outgrowth and GDNF/WNT11 feedback signalling during kidney branching morphogenesis. Development 134:2397–2405

    Article  CAS  PubMed  Google Scholar 

  13. Mugford JW, Yu J, Kobayashi A, McMahon AP (2009) High-resolution gene expression analysis of the developing mouse kidney defines novel cellular compartments within the nephron progenitor population. Dev Biol 333:312–323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Dudley AT, Lyons KM, Robertson EJ (1995) A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev 9:2795–2807

    Article  CAS  PubMed  Google Scholar 

  15. Brown A, Muthukrishnan S, Guay J, Adams D, Schafer D, Fetting JL, Oxburgh L (2013) Role for compartmentalization in nephron progenitor differentiation. Proc Natl Acad Sci USA 110:4641–4645

    Google Scholar 

  16. Ikeya M, Kawada M, Kiyonari H, Sasai N, Nakao K, Furuta Y, Sasai Y (2006) Essential pro-Bmp roles of crossveinless 2 in mouse organogenesis. Development 133:4463–4473

    Article  CAS  PubMed  Google Scholar 

  17. Ikeya M, Fukushima K, Kawada M, Onishi S, Furuta Y, Yonemura S, Kitamura T, Nosaka T, Sasai Y (2010) Cv2, functioning as a pro-BMP factor via twisted gastrulation, is required for early development of nephron precursors. Dev Biol 337:405–414

    Article  CAS  PubMed  Google Scholar 

  18. Satow R, Chan T, Asashima M (2002) Molecular cloning and characterization of dullard: a novel gene required for neural development. Biochem Biophys Res Commun 295:85–91

    Article  CAS  PubMed  Google Scholar 

  19. Kim Y, Gentry MS, Harris TE, Wiley SE, Lawrence JC, Dixon JE (2007) A conserved phosphatase cascade that regulates nuclear membrane biogenesis. Proc Natl Acad Sci USA 104:6596–6601

    Article  CAS  PubMed  Google Scholar 

  20. Satow R, Kurisaki A, Chan T, Hamazaki TS, Asashima M (2006) Dullard promotes degradation and dephosphorylation of BMP receptors and is required for neural induction. Dev Cell 11:763–774

    Article  CAS  PubMed  Google Scholar 

  21. Liu Z, Matsuoka S, Enoki A, Yamamoto T, Furukawa K, Yamasaki Y, Nishida Y, Sugiyama S (2011) Negative modulation of bone morphogenetic protein signaling by Dullard during wing vein formation in Drosophila. Dev Growth Differ 53:822–841

    Article  CAS  PubMed  Google Scholar 

  22. Sakaguchi M, Sharmin S, Taguchi A, Ohmori T, Fujimura S, Abe T, Kiyonari H, Komatsu Y, Mishina Y, Asashima M, Araki E, Nishinakamura R (2013) The phosphatase Dullard negatively regulates BMP signalling and is essential for nephron maintenance after birth. Nat Commun 4:1398

    Article  PubMed  Google Scholar 

  23. Yokouchi Y, Sakiyama J, Kameda T, Iba H, Suzuki A, Ueno N, Kuroiwa A (1996) BMP-2/-4 mediate programmed cell death in chicken limb buds. Development 122:3725–3734

    CAS  PubMed  Google Scholar 

  24. Tanaka SS, Nakane A, Yamaguchi YL, Terabayashi T, Abe T, Nakao K, Asashima M, Steiner KA, Tam PP, Nishinakamura R (2013) Dullard/Ctdnep1 modulates WNT signalling activity for the formation of primordial germ cells in the mouse embryo. PLoS One 8:e57428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M (2011) Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146:519–532

    Article  CAS  PubMed  Google Scholar 

  26. Park JS, Valerius MT, McMahon AP (2007) Wnt/beta-catenin signaling regulates nephron induction during mouse kidney development. Development 134:2533–2539

    Article  CAS  PubMed  Google Scholar 

  27. Shimomura H, Sanke T, Hanabusa T, Tsunoda K, Furuta H, Nanjo K (2000) Nonsense mutation of islet-1 gene (Q310X) found in a type 2 diabetic patient with a strong family history. Diabetes 49:1597–1600

    Article  CAS  PubMed  Google Scholar 

  28. Hildebrandt F, Zhou W (2007) Nephronophthisis-associated ciliopathies. J Am Soc Nephrol 18:1855–1871

    Article  CAS  PubMed  Google Scholar 

  29. Hoff S, Halbritter J, Epting D, Frank V, Nguyen T-MT, van Reeuwijk J, Boehlke C, Schell C, Yasunaga T, Helmstädter M, Mergen M, Filhol E, Boldt K, Horn N, Ueffing M, Otto EA, Eisenberger T, Elting MW, van Wijk JA, Bockenhauer D, Sebire NJ, Rittig S, Vyberg M, Ring T, Pohl M, Pape L, Neuhaus TJ, Elshakhs NA, Koon SJ, Harris PC, Grahammer F, Huber TB, Kuehn EW, Kramer-Zucker A, Bolz HJ, Roepman R, Saunier S, Walz G, Hildebrandt F, Bergmann C, Lienkamp SS (2013) ANKS6 is a central component of a nephronophthisis module linking NEK8 to INVS and NPHP3. Nat Genet 45:951–956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Sugimoto H, LeBleu VS, Bosukonda D, Keck P, Taduri G, Bechtel W, Okada H, Carlson W Jr, Bey P, Rusckowski M, Tampe B, Tampe D, Kanasaki K, Zeisberg M, Kalluri R (2012) Activin-like kinase 3 is important for kidney regeneration and reversal of fibrosis. Nat Med 18:396–404

    Article  CAS  PubMed  Google Scholar 

  31. Lin J, Patel SR, Cheng X, Cho EA, Levitan I, Ullenbruch M, Phan SH, Park JM, Dressler GR (2005) Kielin/chordin-like protein, a novel enhancer of BMP signaling, attenuates renal fibrotic disease. Nat Med 11:387–393

    Article  CAS  PubMed  Google Scholar 

  32. Yanagita M, Okuda T, Endo S, Tanaka M, Takahashi K, Fukatsu A, Yanagisawa M, Kita T, Sakurai T (2006) Uterine sensitization-associated gene-1 (USAG-1), a novel BMP antagonist expressed in the kidney, accelerates tubular injury. J Clin Invest 116:70–79

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Tanaka M, Asada M, Higashi AY, Nakamura J, Oguchi A, Tomita M, Yamada S, Asada N, Takase M, Okuda T, Kawachi H, Economides AN, Robertson E, Takahashi S, Sakurai T, Goldschmeding R, Muso E, Fukatsu A, Kita T, Yanagita M (2010) Loss of the BMP antagonist USAG-1 ameliorates disease in a mouse model of the progressive hereditary kidney disease Alport syndrome. J Clin Invest 120:768–777

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Makoto Asashima for his long-term support and encouragement since we started our collaboration in 1996.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryuichi Nishinakamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishinakamura, R., Sakaguchi, M. BMP signaling and its modifiers in kidney development. Pediatr Nephrol 29, 681–686 (2014). https://doi.org/10.1007/s00467-013-2671-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-013-2671-9

Keywords

Navigation