Skip to main content

Advertisement

Log in

Controversies on the origin of proliferating epithelial cells after kidney injury

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The kidney possesses the capacity to repair after an acute insult, even one that causes complete organ failure. This regenerative response is characterized by robust proliferation of epithelial cells, principally those located in the proximal tubule. Because defining the origin of these reparative cells has important consequences for stem cell and regenerative approaches to treating kidney injury, this area has been the subject of intense investigation and debate. While progress has been made in narrowing the possible origin of these cells to an intratubular source, there has been no consensus between the possibility of a pre-existing intratubular stem or progenitor cell versus the possibility that fully differentiated epithelial cells re-enter the cell cycle after injury and generate new proximal tubule cells through self-duplication. This review will summarize the evidence on both sides of this active controversy and provide support for the notion that no pre-existing proximal tubule stem cell population exists, but rather all differentiated proximal tubule epithelia have the capacity to proliferate during repair by a mechanism of dedifferentiation and self-duplication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bonventre JV, Yang L (2011) Cellular pathophysiology of ischemic acute kidney injury. J Clin Investig 121:4210–4221

    Article  CAS  PubMed  Google Scholar 

  2. Coca SG, Singanamala S, Parikh CR (2012) Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int 81:442–448

    Article  PubMed Central  PubMed  Google Scholar 

  3. Chawla LS, Kimmel PL (2012) Acute kidney injury and chronic kidney disease: an integrated clinical syndrome. Kidney Int 82:516–524

    Article  PubMed  Google Scholar 

  4. Humphreys BD, Xu F, Sabbisetti V, Grgic I, Naini SM, Wang N, Chen G, Xiao S, Patel D, Henderson JM, Ichimura T, Mou S, Soeung S, McMahon AP, Kuchroo VK, Bonventre JV (2013) Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis. J Clin Invest 123:4023–4035

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Brezis M, Rosen S (1995) Hypoxia of the renal medulla–its implications for disease. N Engl J Med 332:647–655

    Article  CAS  PubMed  Google Scholar 

  6. Lieberthal W, Nigam SK (1998) Acute renal failure. I. Relative importance of proximal vs. distal tubular injury. Am J Physiol 275:F623–F631

    CAS  PubMed  Google Scholar 

  7. Heyman SN, Rosenberger C, Rosen S (2010) Experimental ischemia-reperfusion: biases and myths-the proximal vs. distal hypoxic tubular injury debate revisited. Kidney Int 77:9–16

    Article  PubMed  Google Scholar 

  8. Wei Q, Dong Z (2012) Mouse model of ischemic acute kidney injury: technical notes and tricks. Am J Physiol Renal Physiol 303:F1487–F1494

    Article  CAS  PubMed  Google Scholar 

  9. Lieberthal W, Nigam SK (2000) Acute renal failure. II. Experimental models of acute renal failure: imperfect but indispensable. Am J Physiol Renal Physiol 278:F1–F12

    CAS  PubMed  Google Scholar 

  10. Carlson BM (2005) Some principles of regeneration in mammalian systems. Anat Rec B New Anat 287:4–13

    Article  PubMed  Google Scholar 

  11. Baddour JA, Sousounis K, Tsonis PA (2012) Organ repair and regeneration: an overview. Birth Defects Res C Embryo Today 96:1–29

    Article  CAS  PubMed  Google Scholar 

  12. Bonventre JV (2003) Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure. J Am Soc Nephrol 14 [Suppl 1]:S55–S61

    Article  PubMed  Google Scholar 

  13. Little MH (2006) Regrow or repair: potential regenerative therapies for the kidney. J Am Soc Nephrol 17:2390–2401

    Article  PubMed  Google Scholar 

  14. Humphreys BD, Valerius MT, Kobayashi A, Mugford JW, Soeung S, Duffield JS, McMahon AP, Bonventre JV (2008) Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2:284–291

    Article  CAS  PubMed  Google Scholar 

  15. Imberti B, Morigi M, Tomasoni S, Rota C, Corna D, Longaretti L, Rottoli D, Valsecchi F, Benigni A, Wang J, Abbate M, Zoja C, Remuzzi G (2007) Insulin-like growth factor-1 sustains stem cell mediated renal repair. J Am Soc Nephrol 18:2921–2928

    Article  CAS  PubMed  Google Scholar 

  16. Togel F, Hu Z, Weiss K, Isaac J, Lange C, Westenfelder C (2005) Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol 289:F31–F42

    Article  PubMed  Google Scholar 

  17. Togel F, Weiss K, Yang Y, Hu Z, Zhang P, Westenfelder C (2007) Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am J Physiol Renal Physiol 292:F1626–F1635

    Article  CAS  PubMed  Google Scholar 

  18. Bi B, Schmitt R, Israilova M, Nishio H, Cantley LG (2007) Stromal cells protect against acute tubular injury via an endocrine effect. J Am Soc Nephrol 18:2486–2496

    Article  PubMed  Google Scholar 

  19. Weissman IL (2000) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100:157–168

    Article  CAS  PubMed  Google Scholar 

  20. Seaberg RM, van der Kooy D (2003) Stem and progenitor cells: the premature desertion of rigorous definitions. Trends Neurosci 26:125–131

    Article  CAS  PubMed  Google Scholar 

  21. Maeshima A, Yamashita S, Nojima Y (2003) Identification of renal progenitor-like tubular cells that participate in the regeneration processes of the kidney. J Am Soc Nephrol 14:3138–3146

    Article  PubMed  Google Scholar 

  22. Maeshima A, Sakurai H, Nigam SK (2006) Adult kidney tubular cell population showing phenotypic plasticity, tubulogenic capacity, and integration capability into developing kidney. J Am Soc Nephrol 17:188–198

    Article  CAS  PubMed  Google Scholar 

  23. Oliver JA, Maarouf O, Cheema FH, Martens TP, Al-Awqati Q (2004) The renal papilla is a niche for adult kidney stem cells. J Clin Invest 114:795–804

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Oliver JA, Klinakis A, Cheema FH, Friedlander J, Sampogna RV, Martens TP, Liu C, Efstratiadis A, Al-Awqati Q (2009) Proliferation and migration of label-retaining cells of the kidney papilla. J Am Soc Nephrol 20:2315–2327

    Article  PubMed  Google Scholar 

  25. Humphreys BD, Czerniak S, Dirocco DP, Hasnain W, Cheema R, Bonventre JV (2011) Repair of injured proximal tubule does not involve specialized progenitors. Proc Natl Acad Sci U S A 108:9226–9231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Kitamura S, Yamasaki Y, Kinomura M, Sugaya T, Sugiyama H, Maeshima Y, Makino H (2005) Establishment and characterization of renal progenitor like cells from S3 segment of nephron in rat adult kidney. FASEB J 19:1789–1797

    Article  CAS  PubMed  Google Scholar 

  27. Langworthy M, Zhou B, de Caestecker M, Moeckel G, Baldwin HS (2009) NFATc1 identifies a population of proximal tubule cell progenitors. J Am Soc Nephrol 20:311–321

    Article  CAS  PubMed  Google Scholar 

  28. Sagrinati C, Netti GS, Mazzinghi B, Lazzeri E, Liotta F, Frosali F, Ronconi E, Meini C, Gacci M, Squecco R, Carini M, Gesualdo L, Francini F, Maggi E, Annunziato F, Lasagni L, Serio M, Romagnani S, Romagnani P (2006) Isolation and characterization of multipotent progenitor cells from the Bowman’s capsule of adult human kidneys. J Am Soc Nephrol 17:2443–2456

    Article  CAS  PubMed  Google Scholar 

  29. Lazzeri E, Crescioli C, Ronconi E, Mazzinghi B, Sagrinati C, Netti GS, Angelotti ML, Parente E, Ballerini L, Cosmi L, Maggi L, Gesualdo L, Rotondi M, Annunziato F, Maggi E, Lasagni L, Serio M, Romagnani S, Vannelli GB, Romagnani P (2007) Regenerative potential of embryonic renal multipotent progenitors in acute renal failure. J Am Soc Nephrol 18:3128–3138

    Article  CAS  PubMed  Google Scholar 

  30. Ronconi E, Sagrinati C, Angelotti ML, Lazzeri E, Mazzinghi B, Ballerini L, Parente E, Becherucci F, Gacci M, Carini M, Maggi E, Serio M, Vannelli GB, Lasagni L, Romagnani S, Romagnani P (2009) Regeneration of glomerular podocytes by human renal progenitors. J Am Soc Nephrol 20:322–332

    Article  CAS  PubMed  Google Scholar 

  31. Angelotti ML, Ronconi E, Ballerini L, Peired A, Mazzinghi B, Sagrinati C, Parente E, Gacci M, Carini M, Rotondi M, Fogo AB, Lazzeri E, Lasagni L, Romagnani P (2012) Characterization of renal progenitors committed toward tubular lineage and their regenerative potential in renal tubular injury. Stem Cells 30:1714–1725

    Article  CAS  PubMed  Google Scholar 

  32. Romagnani P, Remuzzi G (2013) Renal progenitors in non-diabetic and diabetic nephropathies. Trends Endocrinol Metab 24:13–20

    Article  CAS  PubMed  Google Scholar 

  33. Smeets B, Boor P, Dijkman H, Sharma SV, Jirak P, Mooren F, Berger K, Bornemann J, Gelman IH, Floege J, van der Vlag J, Wetzels JF, Moeller MJ (2012) Proximal tubular cells contain a phenotypically distinct, scattered cell population involved in tubular regeneration. J Pathol 229:645–659

    Article  Google Scholar 

  34. Lindgren D, Bostrom AK, Nilsson K, Hansson J, Sjolund J, Moller C, Jirstrom K, Nilsson E, Landberg G, Axelson H, Johansson ME (2011) Isolation and characterization of progenitor-like cells from human renal proximal tubules. Am J Pathol 178:828–837

    Article  PubMed  Google Scholar 

  35. Miraglia S, Godfrey W, Yin AH, Atkins K, Warnke R, Holden JT, Bray RA, Waller EK, Buck DW (1997) A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood 90:5013–5021

    CAS  PubMed  Google Scholar 

  36. Monzani E, Facchetti F, Galmozzi E, Corsini E, Benetti A, Cavazzin C, Gritti A, Piccinini A, Porro D, Santinami M, Invernici G, Parati E, Alessandri G, La Porta CA (2007) Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur J Cancer 43:935–946

    Article  CAS  PubMed  Google Scholar 

  37. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    CAS  PubMed  Google Scholar 

  38. Todaro M, Alea MP, Di Stefano AB, Cammareri P, Vermeulen L, Iovino F, Tripodo C, Russo A, Gulotta G, Medema JP, Stassi G (2007) Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 1:389–402

    Article  CAS  PubMed  Google Scholar 

  39. Green CL, Loken M, Buck D, Deeg HJ (2000) Discordant expression of AC133 and AC141 in patients with myelodysplastic syndrome (MDS) and acute myelogeneous leukemia (AML). Leukemia 14:770–772

    Article  CAS  PubMed  Google Scholar 

  40. Kemper K, Sprick MR, de Bree M, Scopelliti A, Vermeulen L, Hoek M, Zeilstra J, Pals ST, Mehmet H, Stassi G, Medema JP (2010) The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation. Cancer Res 70:719–729

    Article  CAS  PubMed  Google Scholar 

  41. Angelotti ML, Lazzeri E, Lasagni L, Romagnani P (2010) Only anti-CD133 antibodies recognizing the CD133/1 or the CD133/2 epitopes can identify human renal progenitors. Kidney Int 78:620–621, author reply 621

    Article  CAS  PubMed  Google Scholar 

  42. Romagnani P (2012) Of mice and men: the riddle of tubular regeneration. J Pathol 229:641–644

    Article  Google Scholar 

  43. Axelson H, Johansson ME (2013) Renal stem cells and their implications for kidney cancer. Semin Cancer Biol 23:56–61

    Article  CAS  PubMed  Google Scholar 

  44. Vogetseder A, Picard N, Gaspert A, Walch M, Kaissling B, Le Hir M (2008) Proliferation capacity of the renal proximal tubule involves the bulk of differentiated epithelial cells. Am J Physiol Cell Physiol 294:C22–C28

    Article  CAS  PubMed  Google Scholar 

  45. Kobayashi A, Valerius MT, Mugford JW, Carroll TJ, Self M, Oliver G, McMahon AP (2008) Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 3:169–181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Benigni A, Morigi M, Remuzzi G (2010) Kidney regeneration. Lancet 375:1310–1317

    Article  CAS  PubMed  Google Scholar 

  47. Kusaba T, Lalli M, Kramann R, Kobayashi A, Humphreys BD (2013) Differentiated kidney epithelial cells repair injured proximal tubule. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1310653110

    PubMed  Google Scholar 

  48. Madjdpour C, Bacic D, Kaissling B, Murer H, Biber J (2004) Segment-specific expression of sodium-phosphate cotransporters NaPi-IIa and -IIc and interacting proteins in moue renal proximal tubules. Pflugers Arch 448:402–410

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin D. Humphreys.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kusaba, T., Humphreys, B.D. Controversies on the origin of proliferating epithelial cells after kidney injury. Pediatr Nephrol 29, 673–679 (2014). https://doi.org/10.1007/s00467-013-2669-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-013-2669-3

Keywords

Navigation