Skip to main content

Advertisement

Log in

Susceptibility to acute pyelonephritis or asymptomatic bacteriuria: Host–pathogen interaction in urinary tract infections

  • REVIEW
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Our knowledge of the molecular mechanisms of urinary tract infection (UTI) pathogenesis has advanced greatly in recent years. In this review, we provide a general background of UTI pathogenesis, followed by an update on the mechanisms of UTI susceptibility, with a particular focus on genetic variation affecting innate immunity. The innate immune response of the host is critically important in the antibacterial defence mechanisms of the urinary tract, and bacterial clearance normally proceeds without sequelae. However, slight dysfunctions in these mechanisms may result in acute disease and tissue destruction. The symptoms of acute pyelonephritis are caused by the innate immune response, and inflammation in the urinary tract decreases renal tubular function and may give rise to renal scarring, especially in paediatric patients. In contrast, in children with asymptomatic bacteriuria (ABU), bacteria persist without causing symptoms or pathology. Pathogenic agents trigger a response determined by their virulence factors, mediating adherence to the urinary tract mucosa, signalling through Toll-like receptors (TLRs) and activating the defence mechanisms. In ABU strains, such virulence factors are mostly not expressed. However, the influence of the host on UTI severity cannot be overestimated, and rapid progress is being made in clarifying host susceptibility mechanisms. For example, genetic alterations that reduce TLR4 function are associated with ABU, while polymorphisms reducing IRF3 or CXCR1 expression are associated with acute pyelonephritis and an increased risk for renal scarring. It should be plausible to “individualize” diagnosis and therapy by combining information on bacterial virulence and the host response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Stamm WE, Norrby SR (2001) Urinary tract infections: disease panorama and challenges. J Infect Dis 183(Suppl 1):S1–S4

    Article  PubMed  Google Scholar 

  2. Svanborg C, Bergsten G, Fischer H, Frendeus B, Godaly G, Gustafsson E, Hang L, Hedlund M, Karpman D, Lundstedt AC, Samuelsson M, Samuelsson P, Svensson M, Wullt B (2001) The ‘innate’ host response protects and damages the infected urinary tract. Ann Med 33:563–570

    Article  PubMed  CAS  Google Scholar 

  3. Lindberg U, Claesson I, Hanson LA, Jodal U (1975) Asymptomatic bacteriuria in schoolgirls. I. Clinical and laboratory findings. Acta Paediatr Scand 64:425–431

    Article  PubMed  CAS  Google Scholar 

  4. Kass EH (1956) Asymptomatic infection of the urinary tract. Trans Assoc Am Physicians 69:56–63

    PubMed  CAS  Google Scholar 

  5. Wullt B (2003) The role of P fimbriae for Escherichia coli establishment and mucosal inflammation in the human urinary tract. Int J Antimicrob Agents 21:605–621

    Article  PubMed  Google Scholar 

  6. Stenquist K, Dahlén-Nilsson I, Lidin-Janson G, Lincoln K, Odén A, Rignell S, Svanborg-Edén C (1989) Bacteriuria in pregnancy: frequency and risk of acquisition. Am J Epidemiol 129:372–379

    Google Scholar 

  7. Wettergren B, Jodal U, Jonasson G (1985) Epidemiology of bacteriuria during the first year of life. Acta Pediatr Scand 74:925–933

    Article  CAS  Google Scholar 

  8. Nordenstam G, Branberg Å, Odén A, Svanborg-Edén C, Svanborg A (1986) Bacteriuria and mortality in an elderly population. N Engl J Med 314:1152–1156

    Article  PubMed  CAS  Google Scholar 

  9. Marsh FP, Banerjee R, Panchamia P (1974) The relationship between urinary infection, cystoscopic appearance, and pathology of the bladder in man. J Clin Pathol 27:297–307

    Article  PubMed  CAS  Google Scholar 

  10. Kunin C (1987) Urinary tract infections. Detection, prevention and management, 5th edn. Williams & Wilkins, Baltimore

    Google Scholar 

  11. Ragnarsdottir B, Fischer H, Godaly G, Gronberg-Hernandez J, Gustafsson M, Karpman D, Lundstedt AC, Lutay N, Ramisch S, Svensson ML, Wullt B, Yadav M, Svanborg C (2008) TLR- and CXCR1-dependent innate immunity: insights into the genetics of urinary tract infections. Eur J Clin Invest 38(Suppl 2):12–20

    Article  PubMed  CAS  Google Scholar 

  12. Svanborg C, Hanson LA, Jodal U, Lindberg U, Akerlund AS (1976) Variable adherence to normal human urinary-tract epithelial cells of Escherichia coli strains associated with various forms of urinary-tract infection. Lancet 1:490–492

    Article  Google Scholar 

  13. Yamamoto S (2007) Molecular epidemiology of uropathogenic Escherichia coli. J Infect Chemother 13:68–73

    Article  PubMed  Google Scholar 

  14. Oelschlaeger TA, Dobrindt U, Hacker J (2002) Virulence factors of uropathogens. Curr Opin Urol 12:33–38

    Article  PubMed  Google Scholar 

  15. Evans DJ Jr, Evans DG (1983) Classification of pathogenic Escherichia coli according to serotype and the production of virulence factors, with special reference to colonization-factor antigens. Rev Infect Dis 5(Suppl 4):S692–S701

    Article  PubMed  Google Scholar 

  16. Orskov I, Orskov F, Jann B, Jann K (1977) Serology, chemistry, and genetics of O and K antigens of Escherichia coli. Bacteriol Rev 41:667–710

    PubMed  CAS  Google Scholar 

  17. Ragnarsdottir B, Lutay N, Gronberg-Hernandez J, Koves B, Svanborg C (2011) Genetics of innate immunity and UTI susceptibility. Nat Rev Urol 8:449–468

    Article  PubMed  Google Scholar 

  18. Hagberg L, Hull R, Hull S, McGhee JR, Michalek SM, Svanborg-Edén C (1984) Difference in susceptibility to Gram-negative urinary tract infection between C3H/HeJ and C3H/HeN mice. Infect Immun 46:839–844

    PubMed  CAS  Google Scholar 

  19. Frendeus B, Godaly G, Hang L, Karpman D, Lundstedt AC, Svanborg C (2000) Interleukin 8 receptor deficiency confers susceptibility to acute experimental pyelonephritis and may have a human counterpart. J Exp Med 192:881–890

    Article  PubMed  CAS  Google Scholar 

  20. Hang L, Frendeus B, Godaly G, Svanborg C (2000) Interleukin-8 receptor knockout mice have subepithelial neutrophil entrapment and renal scarring following acute pyelonephritis. J Infect Dis 182:1738–1748

    Article  PubMed  CAS  Google Scholar 

  21. Svensson M, Irjala H, Alm P, Holmqvist B, Lundstedt AC, Svanborg C (2005) Natural history of renal scarring in susceptible mIL-8Rh-/- mice. Kidney Int 67:103–110

    Article  PubMed  Google Scholar 

  22. Lundstedt AC, McCarthy S, Gustafsson MC, Godaly G, Jodal U, Karpman D, Leijonhufvud I, Linden C, Martinell J, Ragnarsdottir B, Samuelsson M, Truedsson L, Andersson B, Svanborg C (2007) A genetic basis of susceptibility to acute pyelonephritis. PLoS One 2:e825

    Article  PubMed  Google Scholar 

  23. Ragnarsdottir B, Jonsson K, Urbano A, Gronberg-Hernandez J, Lutay N, Tammi M, Gustafsson M, Lundstedt AC, Leijonhufvud I, Karpman D, Wullt B, Truedsson L, Jodal U, Andersson B, Svanborg C (2010) Toll-like receptor 4 promoter polymorphisms: common TLR4 variants may protect against severe urinary tract infection. PLoS One 5:e10734

    Article  PubMed  Google Scholar 

  24. Fischer H, Yamamoto M, Akira S, Beutler B, Svanborg C (2006) Mechanism of pathogen-specific TLR4 activation in the mucosa: fimbriae, recognition receptors and adaptor protein selection. Eur J Immunol 36:267–277

    Article  PubMed  CAS  Google Scholar 

  25. Fischer H, Lutay N, Ragnarsdottir B, Yadav M, Jonsson K, Urbano A, Al Hadad A, Ramisch S, Storm P, Dobrindt U, Salvador E, Karpman D, Jodal U, Svanborg C (2010) Pathogen specific, IRF3-dependent signaling and innate resistance to human kidney infection. PLoS Pathogens 6:e1001109

    Article  PubMed  Google Scholar 

  26. Frendeus B, Godaly G, Hang L, Karpman D, Svanborg C (2001) Interleukin-8 receptor deficiency confers susceptibility to acute pyelonephritis. J Infect Dis 183(Suppl 1):S56–S60

    Article  PubMed  CAS  Google Scholar 

  27. Agace WW, Hedges SR, Ceska M, Svanborg C (1993) Interleukin-8 and the neutrophil response to mucosal Gram-negative infection. J Clin Invest 92:780–785

    Article  PubMed  CAS  Google Scholar 

  28. Pak J, Pu Y, Zhang ZT, Hasty DL, Wu XR (2001) Tamm-Horsfall protein binds to type 1 fimbriated Escherichia coli and prevents E. coli from binding to uroplakin Ia and Ib receptors. J Biol Chem 276:9924–9930

    Article  PubMed  CAS  Google Scholar 

  29. Wold A, Mestecky J, Tomana M, Kobata A, Ohbayashi H, Endo T, Svanborg-Edén C (1990) Secretory immunoglobulin-A carries oligosaccharide receptors for Escherichia coli type 1 fimbrial lectin. Infect Immun 58:3073–3077

    PubMed  CAS  Google Scholar 

  30. Xie B, Zhou G, Chan SY, Shapiro E, Kong XP, Wu XR, Sun TT, Costello CE (2006) Distinct glycan structures of uroplakins Ia and Ib: structural basis for the selective binding of FimH adhesin to uroplakin Ia. J Biol Chem 281:14644–14653

    Article  PubMed  CAS  Google Scholar 

  31. Malaviya R, Gao Z, Thankavel K, van der Merwe PA, Abraham SN (1999) The mast cell tumor necrosis factor alpha response to FimH-expressing Escherichia coli is mediated by the glycosylphosphatidylinositol-anchored molecule CD48. Proc Natl Acad Sci USA 96:8110–8115

    Article  PubMed  CAS  Google Scholar 

  32. Eto DS, Jones TA, Sundsbak JL, Mulvey MA (2007) Integrin-mediated host cell invasion by type 1-piliated uropathogenic Escherichia coli. PLoS Pathogens 3:e100

    Article  PubMed  Google Scholar 

  33. Parkkinen J, Virkola R, Korhonen TK (1983) Escherichia coli strains binding neuraminyl α2-3 galactosides. Biochem Biophys Res Commun 11:456–461

    Article  Google Scholar 

  34. Leffler H, Svanborg-Edén C (1980) Chemical identification of a glycosphingolipid receptor for Escherichia coli attaching to human urinary tract epithelial cells and agglutinating human erythrocytes. FEMS Microbiol Lett 8:127–134

    Article  CAS  Google Scholar 

  35. Leffler H, Svanborg-Edén C (1981) Glycolipid receptors for uropathogenic Escherichia coli on human erythrocytes and uroepithelial cells. Infect Immun 34:920–929

    PubMed  CAS  Google Scholar 

  36. Plos K, Connell H, Jodal U, Marklund B, Mårild S, Wettergren B, Svanborg C (1995) Intestinal carriage of P fimbriated Escherichia coli and the susceptibility to urinary tract infection in young children. J Infect Dis 171:625–631

    Article  PubMed  CAS  Google Scholar 

  37. Palsson-McDermott EM, O'Neill LA (2004) Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology 113:153–162

    Article  PubMed  CAS  Google Scholar 

  38. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088

    Article  PubMed  CAS  Google Scholar 

  39. Hedlund M, Wachtler C, Johansson E, Hang L, Somerville JE, Darveau RP, Svanborg C (1999) P fimbriae-dependent, lipopolysaccharide-independent activation of epithelial cytokine responses. Mol Microbiol 33:693–703

    Article  PubMed  CAS  Google Scholar 

  40. Samuelsson P, Hang L, Wullt B, Irjala H, Svanborg C (2004) Toll-like receptor 4 expression and cytokine responses in the human urinary tract mucosa. Infect Immun 72:3179–3186

    Article  PubMed  CAS  Google Scholar 

  41. Horwitz MA, Silverstein SC (1980) Influence of the Escherichia coli capsule on complement fixation and on phagocytosis and killing by human phagocytes. J Clin Invest 65:82–94

    Article  PubMed  CAS  Google Scholar 

  42. Svanborg-Eden C, Hagberg L, Hull R, Hull S, Magnusson KE, Ohman L (1987) Bacterial virulence versus host resistance in the urinary tracts of mice. Infect Immun 55:1224–1232

    PubMed  CAS  Google Scholar 

  43. O'Hanley P, Low D, Romero I, Lark D, Vosti K, Falkow S, Schoolnik G (1985) Gal-Gal binding and hemolysin phenotypes and genotypes associated with uropathogenic Escherichia coli. N Engl J Med 313:414–420

    Article  PubMed  Google Scholar 

  44. Kontoghiorghes GJ, Weinberg ED (1995) Iron: mammalian defense systems, mechanisms of disease, and chelation therapy approaches. Blood Rev 9:33–45

    Article  PubMed  CAS  Google Scholar 

  45. Carbonetti MH, Williams PH (1985) Detection of aerobactin production. In: Sussman M (ed) The virulence of Escherichia coli. Special Publications of the Society of General Microbiology. Academic Press, London, pp 419–424

    Google Scholar 

  46. Johnson JR, Stell AL (2000) Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J Infect Dis 181:261–272

    Article  PubMed  CAS  Google Scholar 

  47. Kanamaru S, Kurazono H, Ishitoya S, Terai A, Habuchi T, Nakano M, Ogawa O, Yamamoto S (2003) Distribution and genetic association of putative uropathogenic virulence factors iroN, iha, kpsMT, ompT and usp in Escherichia coli isolated from urinary tract infections in Japan. J Urol 170:2490–2493

    Article  PubMed  Google Scholar 

  48. Garcia EC, Brumbaugh AR, Mobley HL (2011) Redundancy and specificity of Escherichia coli iron acquisition systems during urinary tract infection. Infect Immun 79:1225–1235

    Article  PubMed  CAS  Google Scholar 

  49. Hedlund M, Nilsson Å, Duan RD, Svanborg C (1998) Sphingomyelin, glycosphingolipids and ceramide signalling in cells exposed to P fimbriated Escherichia coli. Mol Microbiol 29:1297–1306

    Article  PubMed  CAS  Google Scholar 

  50. Hedlund M, Svensson M, Nilsson A, Duan RD, Svanborg C (1996) Role of the ceramide-signaling pathway in cytokine responses to P-fimbriated Escherichia coli. J Exp Med 183:1037–1044

    Article  PubMed  CAS  Google Scholar 

  51. Fischer H, Ellstrom P, Ekstrom K, Gustafsson L, Gustafsson M, Svanborg C (2007) Ceramide as a TLR4 agonist; a putative signalling intermediate between sphingolipid receptors for microbial ligands and TLR4. Cell Microbiol 9:1239–1251

    Article  PubMed  CAS  Google Scholar 

  52. Ragnarsdottir B, Samuelsson M, Gustafsson MC, Leijonhufvud I, Karpman D, Svanborg C (2007) Reduced toll-like receptor 4 expression in children with asymptomatic bacteriuria. J Infect Dis 196:475–484

    Article  PubMed  CAS  Google Scholar 

  53. Hedges S, Anderson P, Lidin JG, de Man P, Svanborg C (1991) Interleukin-6 response to deliberate colonization of the human urinary tract with Gram-negative bacteria. Infect Immun 59:421–427

    Google Scholar 

  54. Hedges S, Svensson M, Svanborg C (1992) Interleukin-6 response of epithelial cell lines to bacterial stimulation in vitro. Infect Immun 60:1295–1301

    PubMed  CAS  Google Scholar 

  55. Godaly G, Proudfoot AE, Offord RE, Svanborg C, Agace WW (1997) Role of epithelial interleukin-8 (IL-8) and neutrophil IL-8 receptor A in Escherichia coli-induced transuroepithelial neutrophil migration. Infect Immun 65:3451–3456

    PubMed  CAS  Google Scholar 

  56. Godaly G, Otto G, Burdick MD, Strieter RM, Svanborg C (2007) Fimbrial lectins influence the chemokine repertoire in the urinary tract mucosa. Kidney Int 71:778–786

    Article  PubMed  CAS  Google Scholar 

  57. Ali AS, Townes CL, Hall J, Pickard RS (2009) Maintaining a sterile urinary tract: the role of antimicrobial peptides. J Urol 182:21–28

    Article  PubMed  CAS  Google Scholar 

  58. Chromek M, Slamova Z, Bergman P, Kovacs L, Podracka L, Ehren I, Hokfelt T, Gudmundsson GH, Gallo RL, Agerberth B, Brauner A (2006) The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat Med 12:636–641

    Article  PubMed  CAS  Google Scholar 

  59. Montini G, Tullus K, Hewitt I (2011) Febrile urinary tract infections in children. N Engl J Med 365:239–250

    Article  PubMed  CAS  Google Scholar 

  60. Lomberg H, Hanson L, Jacobsson B, Jodal U, Leffler H, Svanborg-Edén C (1983) Correlation of P blood group phenotype, vesicoureteral reflux and bacterial attachment in patients with recurrent pyelonephritis. N Engl J Med 308:1189–1192

    Article  PubMed  CAS  Google Scholar 

  61. Svensson M, Yadav M, Holmqvist B, Lutay N, Svanborg C, Godaly G (2011) Acute pyelonephritis and renal scarring are caused by dysfunctional innate immunity in mCxcr2 heterozygous mice. Kidney Int 80:1064–1072

    Article  PubMed  CAS  Google Scholar 

  62. Svensson M, Irjala H, Svanborg C, Godaly G (2008) Effects of epithelial and neutrophil CXCR2 on innate immunity and resistance to kidney infection. Kidney Int 74:81–90

    Article  PubMed  CAS  Google Scholar 

  63. Yin X, Hou T, Liu Y, Chen J, Yao Z, Ma C, Yang L, Wei L (2010) Association of Toll-like receptor 4 gene polymorphism and expression with urinary tract infection types in adults. PLoS One 5:e14223

    Article  PubMed  CAS  Google Scholar 

  64. Hawn TR, Scholes D, Wang H, Li SS, Stapleton AE, Janer M, Aderem A, Stamm WE, Zhao LP, Hooton TM (2009) Genetic variation of the human urinary tract innate immune response and asymptomatic bacteriuria in women. PLoS One 4:e8300

    Article  PubMed  Google Scholar 

  65. Lundstedt AC, Leijonhufvud I, Ragnarsdottir B, Karpman D, Andersson B, Svanborg C (2007) Inherited susceptibility to acute pyelonephritis: a family study of urinary tract infection. J Infect Dis 195:1227–1234

    Article  PubMed  Google Scholar 

  66. Artifoni L, Negrisolo S, Montini G, Zucchetta P, Molinari PP, Cassar W, Destro R, Anglani F, Rigamonti W, Zacchello G, Murer L (2007) Interleukin-8 and CXCR1 receptor functional polymorphisms and susceptibility to acute pyelonephritis. J Urol 177:1102–1106

    Article  PubMed  CAS  Google Scholar 

  67. Smithson A, Sarrias MR, Barcelo J, Suarez B, Horcajada JP, Soto SM, Soriano A, Vila J, Martinez JA, Vives J, Mensa J, Lozano F (2005) Expression of interleukin-8 receptors (CXCR1 and CXCR2) in premenopausal women with recurrent urinary tract infections. Clin Diagn Lab Immunol 12:1358–1363

    PubMed  CAS  Google Scholar 

  68. Centi S, Negrisolo S, Stefanic A, Benetti E, Cassar W, Da Dalt L, Rigamonti W, Zucchetta P, Montini G, Murer L, Artifoni L (2010) Upper urinary tract infections are associated with RANTES promoter polymorphism. J Pediatr 157:1038–1040.e1

    Article  PubMed  CAS  Google Scholar 

  69. Hughes LB, Criswell LA, Beasley TM, Edberg JC, Kimberly RP, Moreland LW, Seldin MF, Bridges SL (2004) Genetic risk factors for infection in patients with early rheumatoid arthritis. Genes Immun 5:641–647

    Article  PubMed  CAS  Google Scholar 

  70. Hussein A, Askar E, Elsaeid M, Schaefer F (2010) Functional polymorphisms in transforming growth factor-beta-1 (TGFbeta-1) and vascular endothelial growth factor (VEGF) genes modify risk of renal parenchymal scarring following childhood urinary tract infection. Nephrol Dial Transplant 25:779–785

    Article  PubMed  CAS  Google Scholar 

  71. Kuroda S, Solari V, Puri P (2007) Association of transforming growth factor-beta1 gene polymorphism with familial vesicoureteral reflux. J Urol 178:1650–1653

    Article  PubMed  CAS  Google Scholar 

  72. Lee-Chen GJ, Liu KP, Lai YC, Juang HS, Huang SY, Lin CY (2004) Significance of the tissue kallikrein promoter and transforming growth factor-beta1 polymorphisms with renal progression in children with vesicoureteral reflux. Kidney Int 65:1467–1472

    Article  PubMed  CAS  Google Scholar 

  73. Hawn TR, Scholes D, Li SS, Wang H, Yang Y, Roberts PL, Stapleton AE, Janer M, Aderem A, Stamm WE, Zhao LP, Hooton TM (2009) Toll-like receptor polymorphisms and susceptibility to urinary tract infections in adult women. PLoS One 4:e5990

    Article  PubMed  Google Scholar 

  74. Stamey TA (1987) Recurrent urinary tract infections in female patients: an overview of management and treatment. Rev Infect Dis 9(Suppl 2):S195–S210

    Article  PubMed  Google Scholar 

  75. Lomberg H, Jodal U, Svanborg-Edén C, Leffler H, Samuelsson B (1981) P1 blood group and urinary tract infection. Lancet i:551–552

  76. Stapleton A, Nudelman E, Clausen H, Hakomori S, Stamm WE (1992) Binding of uropathogenic Escherichia coli R45 to glycolipids extracted from vaginal epithelial cells is dependent on histo-blood group secretor status. J Clin Invest 90:965–972

    Article  PubMed  CAS  Google Scholar 

  77. Lindstedt R, Larson G, Falk P, Jodal U, Leffler H, Svanborg-Edén C (1991) The receptor repertoire defines the host range for attaching Escherichia coli recognizing globo-A. Infect Immun 59:1086–1092

    PubMed  CAS  Google Scholar 

  78. Orskov I, Ferencz A, Orskov F (1980) Tamm-Horsfall protein or uromucoid is the normal urinary slime that traps type 1 fimbriated Escherichia coli. Lancet 1:887

    Article  PubMed  CAS  Google Scholar 

  79. Korhonen TK, Parkkinen J, Hacker J, Finne J, Pere A, Rhen M, Holthofer H (1986) Binding of Escherichia coli S fimbriae to human kidney epithelium. Infect Immun 54:322–327

    PubMed  CAS  Google Scholar 

  80. Korhonen TK, Väisänen-Rhen V, Rhen M, Pere A, Parkkinen J, Finne J (1984) Escherichia coli fimbriae recognize sialyl galactosides. J Bacteriol 159:762–766

    PubMed  CAS  Google Scholar 

  81. Scholes D, Hooton TM, Roberts PL, Stapleton AE, Gupta K, Stamm WE (2000) Risk factors for recurrent urinary tract infection in young women. J Infect Dis 182:1177–1182

    Article  PubMed  CAS  Google Scholar 

  82. Stauffer CM, van der Weg B, Donadini R, Ramelli GP, Marchand S, Bianchetti MG (2004) Family history and behavioral abnormalities in girls with recurrent urinary tract infections: a controlled study. J Urol 171:1663–1665

    Article  PubMed  Google Scholar 

  83. Scholes D, Hawn TR, Roberts PL, Li SS, Stapleton AE, Zhao LP, Stamm WE, Hooton TM (2010) Family history and risk of recurrent cystitis and pyelonephritis in women. J Urol 184:564–569

    Article  PubMed  Google Scholar 

  84. Svanborg Eden C, Briles D, Hagberg L, McGhee J, Michalec S (1984) Genetic factors in host resistance to urinary tract infection. Infection 12:118–123

    Article  PubMed  CAS  Google Scholar 

  85. Pecha B, Low D, O'Hanley P (1989) Gal-Gal pili vaccines prevent pyelonephritis by piliated Escherichia coli in a murine model. Single-component Gal-Gal pili vaccines prevent pyelonephritis by homologous and heterologous piliated E. coli strains. J Clin Invest 83:2102–2108

    Article  PubMed  CAS  Google Scholar 

  86. Langermann S, Palaszynski S, Barnhart M, Auguste G, Pinkner JS, Burlein J, Barren P, Koenig S, Leath S, Jones CH, Hultgren SJ (1997) Prevention of mucosal Escherichia coli infection by FimH-adhesin-based systemic vaccination. Science 276:607–611

    Article  PubMed  CAS  Google Scholar 

  87. Langermann S, Mollby R, Burlein JE, Palaszynski SR, Auguste CG, DeFusco A, Strouse R, Schenerman MA, Hultgren SJ, Pinkner JS, Winberg J, Guldevall L, Soderhall M, Ishikawa K, Normark S, Koenig S (2000) Vaccination with FimH adhesin protects cynomolgus monkeys from colonization and infection by uropathogenic Escherichia coli. J Infect Dis 181:774–778

    Article  PubMed  CAS  Google Scholar 

  88. Wullt B, Bergsten G, Connell H, Rollano P, Gebretsadik N, Hull R, Svanborg C (2000) P fimbriae enhance the early establishment of Escherichia coli in the human urinary tract. Mol Microbiol 38:456–464

    Article  PubMed  CAS  Google Scholar 

  89. Wullt B, Bergsten G, Samuelsson M, Gebretsadik N, Hull R, Svanborg C (2001) The role of P fimbriae for colonization and host response induction in the human urinary tract. J Infect Dis 183(Suppl 1):S43–S46

    Article  PubMed  Google Scholar 

  90. Bergsten G, Samuelsson M, Wullt B, Leijonhufvud I, Fischer H, Svanborg C (2004) PapG-dependent adherence breaks mucosal inertia and triggers the innate host response. J Infect Dis 189:1734–1742

    Article  PubMed  CAS  Google Scholar 

  91. P, Jodal U, Lincoln K, Eden CS (1988) Bacterial attachment and inflammation in the urinary tract. J Infect Dis 158:29–35

  92. Huang YY, Chen MJ, Chiu NT, Chou HH, Lin KY, Chiou YY (2011) Adjunctive oral methylprednisolone in pediatric acute pyelonephritis alleviates renal scarring. Pediatrics doi:10.1542/peds.2010-0297

  93. Wang YT, Chiu NT, Chen MJ, Huang JJ, Chou HH, Chiou YY (2005) Correlation of renal ultrasonographic findings with inflammatory volume from dimercaptosuccinic acid renal scans in children with acute pyelonephritis. J Urol 173:190–194, discussion 194

    Article  PubMed  Google Scholar 

  94. Hopkins W, Gendron-Fitzpatrick A, McCarthy DO, Haine JE, Uehling DT (1996) Lipopolysaccharide-responder and nonresponder C3H mouse strains are equally susceptible to an induced Escherichia coli urinary tract infection. Infect Immun 64:1369–1372

    PubMed  CAS  Google Scholar 

  95. Cotton SA, Gbadegesin RA, Williams S, Brenchley PE, Webb NJ (2002) Role of TGF-beta1 in renal parenchymal scarring following childhood urinary tract infection. Kidney Int 61:61–67

    Article  PubMed  CAS  Google Scholar 

  96. Khalil A, Brauner A, Bakhiet M, Burman LG, Jaremko G, Wretlind B, Tullus K (1997) Cytokine gene expression during experimental Escherichia coli pyelonephritis in mice. J Urol 158:1576–1580

    Article  PubMed  CAS  Google Scholar 

  97. Kulkarni AB, Karlsson S (1993) Transforming growth factor-beta 1 knockout mice. A mutation in one cytokine gene causes a dramatic inflammatory disease. Am J Pathol 143:3–9

    PubMed  CAS  Google Scholar 

  98. Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, Allen R, Sidman C, Proetzel G, Calvin D, Annunziata N, Doetschman T (1992) Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359:693–699

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catharina Svanborg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ragnarsdóttir, B., Svanborg, C. Susceptibility to acute pyelonephritis or asymptomatic bacteriuria: Host–pathogen interaction in urinary tract infections. Pediatr Nephrol 27, 2017–2029 (2012). https://doi.org/10.1007/s00467-011-2089-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-011-2089-1

Keywords

Navigation