Skip to main content

Advertisement

Log in

The influence of gender and sexual hormones on incidence and outcome of chronic kidney disease

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

It has long been known that the female sex is associated with a better clinical outcome in chronic renal diseases. Although many experimental, clinical, and epidemiological studies in adults have attempted to explain the difference in disease progression between females and males, a definitive understanding of the underlying mechanisms is still lacking. Hormone-modulating therapies are being increasingly used for various indications (such as post-menopausal hormone replacement, estrogen- or androgen-receptor antagonists for cancer therapy). Therefore, a deeper knowledge of the interaction between sexual hormones and progression of kidney disease is important, as hormone-modulating therapy for non-renal indication may influence both kidney structure and function. In addition, specific modulation of the sexual hormone system, such as the use of selective estrogen receptor modulators, may represent a therapeutic option for patients with renal diseases. Although conclusive data on this topic in the pediatric population are still lacking, the aim of this review is to familiarize pediatric nephrologists with gender-specific differences in renal physiology, pathophysiology, and the progression of kidney diseases. Experimental models that analyze the effects of sexual hormones on renal structure and function are discussed. It is hoped that this review will stimulate researchers to focus on pediatric studies that will provide a deeper insight into the interaction of gender hormones and the kidney both before and during puberty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Berg UB (2006) Differences in decline in GFR with age between males and females. Reference data on clearances of inulin and PAH in potential kidney donors. Nephrol Dial Transplant 21:2577–2582

    Article  PubMed  CAS  Google Scholar 

  2. Neugarten J, Acharya A, Silbiger SR (2000) Effect of gender on the progression of nondiabetic renal disease: a meta-analysis. J Am Soc Nephrol 11:319–329

    PubMed  CAS  Google Scholar 

  3. Cattran DC, Reich HN, Beanlands HJ, Miller JA, Scholey JW, Troyanov S (2008) The impact of sex in primary glomerulonephritis. Nephrol Dial Transplant 23:2247–2253

    Article  PubMed  Google Scholar 

  4. Molina JF, Drenkard C, Molina J, Cardiel MH, Uribe O, Anaya JM, Gomez LJ, Felipe O, Ramirez LA, Alarcon-Segovia D (1996) Systemic lupus erythematosus in males. A study of 107 Latin American patients. Medicine 75:124–130

    Article  PubMed  CAS  Google Scholar 

  5. Raile K, Galler A, Hofer S, Herbst A, Dunstheimer D, Busch P, Holl RW (2007) Diabetic nephropathy in 27,805 children, adolescents, and adults with type 1 diabetes: effect of diabetes duration, A1C, hypertension, dyslipidemia, diabetes onset, and sex. Diabetes Care 30:2523–2528

    Article  PubMed  Google Scholar 

  6. Svensson M, Nystrom L, Schon S, Dahlquist G (2006) Age at onset of childhood-onset type 1 diabetes and the development of end-stage renal disease: a nationwide population-based study. Diabetes Care 29:538–542

    Article  PubMed  Google Scholar 

  7. Norris KC, Agodoa LY (2005) Unraveling the racial disparities associated with kidney disease. Kidney Int 68:914–924

    Article  PubMed  Google Scholar 

  8. Carrero JJ (2010) Gender differences in chronic kidney disease: underpinnings and therapeutic implications. Kidney Blood Press Res 33:383–392

    Article  PubMed  CAS  Google Scholar 

  9. Reed E, Cohen DJ, Barr ML, Ho E, Reemtsma K, Rose EA, Hardy M, Suciu-Foca N (1992) Effect of recipient gender and race on heart and kidney allograft survival. Transplant Proc 24:2670–2671

    PubMed  CAS  Google Scholar 

  10. Zeier M, Dohler B, Opelz G, Ritz E (2002) The effect of donor gender on graft survival. J Am Soc Nephrol 13:2570–2576

    Article  PubMed  Google Scholar 

  11. Kasiske BL, Umen AJ (1986) The influence of age, sex, race, and body habitus on kidney weight in humans. Arch Pathol Lab Med 110:55–60

    PubMed  CAS  Google Scholar 

  12. Nyengaard JR, Bendtsen TF (1992) Glomerular number and size in relation to age, kidney weight, and body surface in normal man. Anat Rec 232:194–201

    Article  PubMed  CAS  Google Scholar 

  13. Vereerstraeten P, Wissing M, De Pauw L, Abramowicz D, Kinnaert P (1999) Male recipients of kidneys from female donors are at increased risk of graft loss from both rejection and technical failure. Clin Transplant 13:181–186

    Article  PubMed  CAS  Google Scholar 

  14. Panajotopoulos N, Ianhez LE, Neumann J, Sabbaga E, Kalil J (1990) Immunological tolerance in human transplantation. The possible existence of a maternal effect. Transplantation 50:443–445

    Article  PubMed  CAS  Google Scholar 

  15. Silbiger SR, Neugarten J (1995) The impact of gender on the progression of chronic renal disease. Am J Kidney Dis 25:515–533

    Article  PubMed  CAS  Google Scholar 

  16. Fakhouri F, Bocquet N, Taupin P, Presne C, Gagnadoux MF, Landais P, Lesavre P, Chauveau D, Knebelmann B, Broyer M, Grunfeld JP, Niaudet P (2003) Steroid-sensitive nephrotic syndrome: from childhood to adulthood. Am J Kidney Dis 41:550–557

    Article  PubMed  Google Scholar 

  17. Ruth EM, Kemper MJ, Leumann EP, Laube GF, Neuhaus TJ (2005) Children with steroid-sensitive nephrotic syndrome come of age: long-term outcome. J Pediatr 147:202–207

    Article  PubMed  Google Scholar 

  18. Kyrieleis HA, Levtchenko EN, Wetzels JF (2007) Long-term outcome after cyclophosphamide treatment in children with steroid-dependent and frequently relapsing minimal change nephrotic syndrome. Am J Kidney Dis 49:592–597

    Article  PubMed  CAS  Google Scholar 

  19. Kyrieleis HA, Lowik MM, Pronk I, Cruysberg HR, Kremer JA, Oyen WJ, van den Heuvel BL, Wetzels JF, Levtchenko EN (2009) Long-term outcome of biopsy-proven, frequently relapsing minimal-change nephrotic syndrome in children. Clin J Am Soc Nephrol 4:1593–1600

    Article  PubMed  Google Scholar 

  20. Staples AO, Greenbaum LA, Smith JM, Gipson DS, Filler G, Warady BA, Martz K, Wong CS (2010) Association between clinical risk factors and progression of chronic kidney disease in children. Clin J Am Soc Nephrol 5:2172–2179

    Article  PubMed  CAS  Google Scholar 

  21. Elema JD, Arends A (1975) Focal and segmental glomerular hyalinosis and sclerosis in the rat. Lab Invest 33:554–561

    PubMed  CAS  Google Scholar 

  22. Hajdu A, Rona G (1971) The protective effect of estrogens against spontaneous pancratic islet and renal changes in aging male rats. Experientia 27:956–957

    Article  PubMed  CAS  Google Scholar 

  23. Lemos CC, Mandarim-de-Lacerda CA, Dorigo D, Coimbra TM, Bregman R (2005) Chronic renal failure in male and female rats. J Nephrol 18:368–373

    PubMed  Google Scholar 

  24. Neugarten J (2002) Gender and the progression of renal disease. J Am Soc Nephrol 13:2807–2809

    Article  PubMed  Google Scholar 

  25. Tofovic SP, Dubey R, Salah EM, Jackson EK (2002) 2-Hydroxyestradiol attenuates renal disease in chronic puromycin aminonucleoside nephropathy. J Am Soc Nephrol 13:2737–2747

    Article  PubMed  CAS  Google Scholar 

  26. Gross ML, Adamczak M, Rabe T, Harbi NA, Krtil J, Koch A, Hamar P, Amann K, Ritz E (2004) Beneficial effects of estrogens on indices of renal damage in uninephrectomized SHRsp rats. J Am Soc Nephrol 15:348–358

    Article  PubMed  CAS  Google Scholar 

  27. Ritz E, Schwenger V (2005) Lifestyle modification and progressive renal failure. Nephrology 10:387–392

    Article  PubMed  Google Scholar 

  28. Tsimihodimos V, Dounousi E, Siamopoulos KC (2008) Dyslipidemia in chronic kidney disease: an approach to pathogenesis and treatment. Am J Nephrol 28:958–973

    Article  PubMed  CAS  Google Scholar 

  29. Nguyen S, Hsu CY (2007) Excess weight as a risk factor for kidney failure. Curr Opin Nephrol Hypertens 16:71–76

    Article  PubMed  Google Scholar 

  30. Westenhoefer J (2005) Age and gender dependent profile of food choice. Forum Nutr:44–51

  31. Graff-Iversen S, Thelle DS, Hammar N (2008) Serum lipids, blood pressure and body weight around the age of the menopause. Eur J Cardiovasc Prev Rehabil 15:83–88

    Article  PubMed  Google Scholar 

  32. Mudali S, Dobs AS, Ding J, Cauley JA, Szklo M, Golden SH (2005) Endogenous postmenopausal hormones and serum lipids: the atherosclerosis risk in communities study. J Clin Endocrinol Metab 90:1202–1209

    Article  PubMed  CAS  Google Scholar 

  33. Feig DI (2009) Uric acid: a novel mediator and marker of risk in chronic kidney disease? Curr Opin Nephrol Hypertens 18:526–530

    Article  PubMed  CAS  Google Scholar 

  34. Krishnan E, Pandya BJ, Chung L, Dabbous O (2011) Hyperuricemia and the risk for subclinical coronary atherosclerosis—data from a prospective observational cohort study. Arthritis Res Ther 13:R66

    Article  PubMed  Google Scholar 

  35. Martinez-Maldonado M (2001) Role of hypertension in the progression of chronic renal disease. Nephrol Dial Transplant 16[Suppl 1]:63–66

    Article  PubMed  Google Scholar 

  36. Khoury S, Yarows SA, O’Brien TK, Sowers JR (1992) Ambulatory blood pressure monitoring in a nonacademic setting. Effects of age and sex. Am J Hypertens 5:616–623

    PubMed  CAS  Google Scholar 

  37. McBride SM, Flynn FW, Ren J (2005) Cardiovascular alteration and treatment of hypertension: do men and women differ? Endocrine 28:199–207

    Article  PubMed  CAS  Google Scholar 

  38. Munger K, Baylis C (1988) Sex differences in renal hemodynamics in rats. Am J Physiol 254:F223–231

    PubMed  CAS  Google Scholar 

  39. Miller JA, Anacta LA, Cattran DC (1999) Impact of gender on the renal response to angiotensin II. Kidney Int 55:278–285

    Article  PubMed  CAS  Google Scholar 

  40. Reckelhoff JF, Zhang H, Srivastava K, Granger JP (1999) Gender differences in hypertension in spontaneously hypertensive rats: role of androgens and androgen receptor. Hypertension 34:920–923

    Article  PubMed  CAS  Google Scholar 

  41. Oelkers WK (1996) Effects of estrogens and progestogens on the renin-aldosterone system and blood pressure. Steroids 61:166–171

    Article  PubMed  CAS  Google Scholar 

  42. Chidambaram M, Duncan JA, Lai VS, Cattran DC, Floras JS, Scholey JW, Miller JA (2002) Variation in the renin angiotensin system throughout the normal menstrual cycle. J Am Soc Nephrol 13:446–452

    PubMed  CAS  Google Scholar 

  43. Ahmed SB, Hovind P, Parving HH, Rossing P, Price DA, Laffel LM, Lansang MC, Stevanovic R, Fisher ND, Hollenberg NK (2005) Oral contraceptives, angiotensin-dependent renal vasoconstriction, and risk of diabetic nephropathy. Diabetes Care 28:1988–1994

    Article  PubMed  CAS  Google Scholar 

  44. Chapman AB, Abraham WT, Zamudio S, Coffin C, Merouani A, Young D, Johnson A, Osorio F, Goldberg C, Moore LG, Dahms T, Schrier RW (1998) Temporal relationships between hormonal and hemodynamic changes in early human pregnancy. Kidney Int 54:2056–2063

    Article  PubMed  CAS  Google Scholar 

  45. Monster TB, Janssen WM, de Jong PE, de Jong-van den Berg LT (2001) Oral contraceptive use and hormone replacement therapy are associated with microalbuminuria. Arch Intern Med 161:2000–2005

    Article  PubMed  CAS  Google Scholar 

  46. Ahmed SB, Culleton BF, Tonelli M, Klarenbach SW, Macrae JM, Zhang J, Hemmelgarn BR (2008) Oral estrogen therapy in postmenopausal women is associated with loss of kidney function. Kidney Int 74:370–376

    Article  PubMed  CAS  Google Scholar 

  47. Schopick EL, Fisher ND, Lin J, Forman JP, Curhan GC (2009) Post-menopausal hormone use and albuminuria. Nephrol Dial Transplant 24:3739–3744

    Article  PubMed  CAS  Google Scholar 

  48. Manning PJ, Sutherland WH, Allum AR, de Jong SA, Jones SD (2003) HRT does not improve urinary albumin excretion in postmenopausal diabetic women. Diabetes Res Clin Pract 60:33–39

    Article  PubMed  CAS  Google Scholar 

  49. Karl M, Berho M, Pignac-Kobinger J, Striker GE, Elliot SJ (2006) Differential effects of continuous and intermittent 17beta-estradiol replacement and tamoxifen therapy on the prevention of glomerulosclerosis: modulation of the mesangial cell phenotype in vivo. Am J Pathol 169:351–361

    Article  PubMed  CAS  Google Scholar 

  50. Klinge CM (2008) Estrogenic control of mitochondrial function and biogenesis. J Cell Biochem 105:1342–1351

    Article  PubMed  CAS  Google Scholar 

  51. Mattingly KA, Ivanova MM, Riggs KA, Wickramasinghe NS, Barch MJ, Klinge CM (2008) Estradiol stimulates transcription of nuclear respiratory factor-1 and increases mitochondrial biogenesis. Mol Endocrinol 22:609–622

    Article  PubMed  CAS  Google Scholar 

  52. Persky AM, Green PS, Stubley L, Howell CO, Zaulyanov L, Brazeau GA, Simpkins JW (2000) Protective effect of estrogens against oxidative damage to heart and skeletal muscle in vivo and in vitro. Proc Soc Exp Biol Med 223:59–66

    Article  PubMed  CAS  Google Scholar 

  53. Dionne IJ, Kinaman KA, Poehlman ET (2000) Sarcopenia and muscle function during menopause and hormone-replacement therapy. J Nutr Health Aging 4:156–161

    PubMed  CAS  Google Scholar 

  54. Flynn JM, Lannigan DA, Clark DE, Garner MH, Cammarata PR (2008) RNA suppression of ERK2 leads to collapse of mitochondrial membrane potential with acute oxidative stress in human lens epithelial cells. Am J Physiol Endocrinol Metab 294:E589–E599

    Article  PubMed  CAS  Google Scholar 

  55. Bjornstrom L, Sjoberg M (2005) Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol Endocrinol 19:833–842

    Article  PubMed  Google Scholar 

  56. Koh PO (2007) Estradiol prevents the injury-induced decrease of 90 ribosomal S6 kinase (p90RSK) and Bad phosphorylation. Neurosci Lett 412:68–72

    Article  PubMed  CAS  Google Scholar 

  57. Catanuto P, Doublier S, Lupia E, Fornoni A, Berho M, Karl M, Striker GE, Xia X, Elliot S (2009) 17 beta-estradiol and tamoxifen upregulate estrogen receptor beta expression and control podocyte signaling pathways in a model of type 2 diabetes. Kidney Int 75:1194–1201

    Article  PubMed  CAS  Google Scholar 

  58. Doublier S, Lupia E, Catanuto P, Periera-Simon S, Xia X, Korach K, Berho M, Elliot SJ, Karl M (2011) Testosterone and 17beta-estradiol have opposite effects on podocyte apoptosis that precedes glomerulosclerosis in female estrogen receptor knockout mice. Kidney Int 79:404–413

    Article  PubMed  CAS  Google Scholar 

  59. Ma H, Togawa A, Soda K, Zhang J, Lee S, Ma M, Yu Z, Ardito T, Czyzyk J, Diggs L, Joly D, Hatakeyama S, Kawahara E, Holzman L, Guan JL, Ishibe S (2010) Inhibition of podocyte FAK protects against proteinuria and foot process effacement. J Am Soc Nephrol 21:1145–1156

    Article  PubMed  CAS  Google Scholar 

  60. Neugarten J, Acharya A, Lei J, Silbiger S (2000) Selective estrogen receptor modulators suppress mesangial cell collagen synthesis. Am J Physiol Renal Physiol 279:F309–318

    PubMed  CAS  Google Scholar 

  61. Guccione M, Silbiger S, Lei J, Neugarten J (2002) Estradiol upregulates mesangial cell MMP-2 activity via the transcription factor AP-2. Am J Physiol Renal Physiol 282:F164–169

    PubMed  CAS  Google Scholar 

  62. Blush J, Lei J, Ju W, Silbiger S, Pullman J, Neugarten J (2004) Estradiol reverses renal injury in Alb/TGF-beta1 transgenic mice. Kidney Int 66:2148–2154

    Article  PubMed  CAS  Google Scholar 

  63. Melamed ML, Blackwell T, Neugarten J, Arnsten JH, Ensrud KE, Ishani A, Cummings SR, Silbiger SR (2011) Raloxifene, a selective estrogen receptor modulator, is renoprotective: a post-hoc analysis. Kidney Int 79:241–249

    Article  PubMed  CAS  Google Scholar 

  64. Nitsch W, Thein K (1955) Therapy of the nephrotic syndrome with estradiol. Ther Ggw 94:364–366

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Kummer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kummer, S., von Gersdorff, G., Kemper, M.J. et al. The influence of gender and sexual hormones on incidence and outcome of chronic kidney disease. Pediatr Nephrol 27, 1213–1219 (2012). https://doi.org/10.1007/s00467-011-1963-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-011-1963-1

Keywords

Navigation