Skip to main content
Log in

Serum osteoprotegerin, RANKL and fibroblast growth factor-23 in children with chronic kidney disease

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Osteoprotegerin (OPG), receptor activator of the nuclear factor κB ligand (RANKL) and fibroblast growth factor-23 (FGF-23) play a central role in renal osteodystrophy. We evaluated OPG/RANKL and FGF-23 levels in 51 children with chronic kidney disease (CKD) [n = 26 stage 3 or 4 (CKD3–4) and n = 25 stage 5 (CKD5)] and 61 controls. Any possible association with intact parathyroid hormone (iPTH) and bone turnover markers was also investigated. The OPG levels were lower in the CKD3–4 group (p < 0.001) and higher in the CKD5 group (p < 0.01) than in the controls, while RANKL levels did not differ. The FGF-23 levels were higher in both patient groups (p < 0.0001), while the levels of phosphate and iPTH were higher only in the CKD5 group (p < 0.0001). There were independent positive correlations between OPG and RANKL (β = 0.297, p < 0.01) and FGF-23 (β = 0.352, p < 0.05) and a negative correlation with the bone resorption marker TRAP5b (β = −0.519, p < 0.001). OPG was positively correlated with iPTH (R = 0.391, p < 0.01). An independent positive correlation between FGF-23 and phosphate (β = 0.368, p < 0.05) or iPTH (β = 0.812, p < 0.0001) was noted. In conclusion, we found that higher OPG levels in patients with CKD stage 5 correlated with the levels of RANKL, FGF-23, iPTH, and TRAP5b. These findings may reflect a compensatory mechanism to the negative balance of bone turnover. High FGF-23 levels in early CKD stages may indicate the need for intervention to manage serum phosphate (Pi) levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BAP:

bone alkaline phosphatase

Ca:

calcium

CKD:

chronic kidney disease

CICP:

C-terminal propeptide of type I collagen

CrossLaps:

C-terminal telopeptides of type I collagen

1,25(OH)2D:

1,25-dihydroxyvitamin D

FGF-23:

fibroblast growth factor-23

GFR:

glomerular filtration rate

HD:

hemodialysis

25OHD:

25-hydroxyvitamin D

iPTH:

intact PTH

N-MID OC:

N-terminal-MID osteocalcin

OPG:

osteoprotegerin

PD:

peritoneal dialysis

Pi:

phosphate

PTH:

parathyroid hormone

RANKL:

receptor activator of the nuclear factor κB ligand

RO:

renal osteodystrophy

sCre:

serum creatinine

TRAP5b:

tartrate-resistant acid phosphatase isoform 5b

References

  1. Moe S, Drüeke T, Cunningham J, Goodman W, Martin K, Olgaard K, Ott S, Sprague S, Lameire N, Eknoyan G (2006) Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 69:1945–1953

    Article  CAS  PubMed  Google Scholar 

  2. Salusky IB, Coburn JW, Brill J, Foley J, Slatopolsky E, Fine RN, Goodman WG (1988) Bone disease in pediatric patients undergoing dialysis with CAPD or CCPD. Kidney Int 33:975–982

    Article  CAS  PubMed  Google Scholar 

  3. Salusky IB, Ramirez JA, Oppenheim W, Gales B, Segre GV, Goodman WG (1994) Biochemical markers of renal osteodystrophy in pediatric patients undergoing CAPD/CCPD. Kidney Int 45:253–258

    Article  CAS  PubMed  Google Scholar 

  4. Ziólkowska H, Pańczyk-Tomaszewska M, Dębiński A, Polowiec Z, Sawicki A, Sieniawska M (2000) Bone biopsy results and serum bone turnover parameters in uremic children. Acta Paediatr 89:666–671

    Article  PubMed  Google Scholar 

  5. Gutierrez O, Isakova T, Rhee E, Shah A, Holmes J, Collerone G, Jüppner H, Wolf M (2005) Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J Am Soc Nephrol 16:2205–2215

    Article  CAS  PubMed  Google Scholar 

  6. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Lüthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Boyle WJ (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319

    Article  CAS  PubMed  Google Scholar 

  7. Min H, Morony S, Sarosi I, Dunstan CR, Capparelli C, Scully S, Van G, Kaufman S, Kostenuik PJ, Lacey DL, Boyle WJ, Simonet WS (2000) Osteoprotegerin reverses osteoporosis by inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis. J Exp Med 192:463–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a lignad for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANE/RANKL. Proc Natl Acad Sci USA 95:3597–3602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li X, Ominsky MS, Stolina M, Warmington KS, Geng Z, Niu QT, Asuncion FJ, Tan HL, Grisanti M, Dwyer D, Adamu S, Ke HZ, Simonet WS, Kostenuik PJ (2009) Increased RANK ligand in bone marrow of orchiectomized rats and prevention of their bone loss by the RANK ligand inhibitor ostoprotegerin. Bone 45:669–676

    Article  CAS  PubMed  Google Scholar 

  10. Huang JC, Sakata T, Pfieger LL, Bencsik M, Halloran BP, Bikle DD, Nissenson RA (2004) PTH differentially regulates expression of RANKL and OPG. J Bone Miner Res 19:235–244

    Article  CAS  PubMed  Google Scholar 

  11. Coen G, Ballanti P, Balducci A, Calabria S, Fischer MS, Jankovic L, Manni M, Morosetti M, Moscaritolo E, Sardella D, Bonucci E (2002) Serum osteoprotegerin and renal osteodystrophy. Nephrol Dial Transplant 17:233–238

    Article  CAS  PubMed  Google Scholar 

  12. Shaarawy M, Fathy SA, Mehany NL, Hindy OW (2007) Circulating levels of osteoprotegerin and receptor activator of NF-kappaB ligand in patients with chronic renal failure. Clin Chem Lab Med 45:1498–1503

    Article  CAS  PubMed  Google Scholar 

  13. Ziólkowska H, Roszkowska-Blaim M (2006) Osteoprotegerin and calcium-phosphorus metabolism parameters in children with chronic renal failure. Przegl Lek 63[Suppl 3]:68–71

    PubMed  Google Scholar 

  14. Swolin-Eide D, Hansson S, Larsson L, Magnusson P (2006) The novel bone alkaline phosphatase B1x isoform in children with kidney disease. Pediatr Nephrol 21:1723–1729

    Article  PubMed  Google Scholar 

  15. Swolin-Eide D, Magnusson P, Hansson S (2007) Bone mass, biochemical markers and growth in children with chronic kidney disease: a 1-year prospective study. Acta Paediatr 96:720–725

    Article  PubMed  Google Scholar 

  16. Swolin-Eide D, Hansson S, Magnusson P (2009) Children with chronic kidney disease: a 3-year prospective study of growth, bone mass and bone turnover. Acta Paediatr 98:367–373

    Article  PubMed  Google Scholar 

  17. Shroff RC, Shah V, Hiorns MP, Schoppet M, Hofbauer LC, Hawa G, Schurgers LJ, Singhal A, Merryweather I, Brogan P, Shanahan C, Deanfield J, Rees L (2008) The circulating calcification inhibitors, fetuin-A and osteoprotegerin, but not Matrix Gla protein, are associated with vascular stiffness and calcification in children on dialysis. Nephrol Dial Transplant 23:3263–3271

    Article  CAS  PubMed  Google Scholar 

  18. Ozkaya O, Buyan N, Bideci A, Gonen S, Ortac E, Fidan K, Cinaz P, Söylemezoğlu O (2007) Osteoprotegerin and RANKL serum levels and their relationship with serum ghrelin in children with chronic renal failure and on dialysis. Nephron Clin Pract 105:c153–c158

    Article  CAS  PubMed  Google Scholar 

  19. Kagami S, Ohkido I, Yokoyama K, Shigematsu T, Hosoya T (2008) Osteoprotegerin affects the responsiveness of fibroblast growth factor-23 to high oral phosphate intake. Clin Nephrol 70:306–311

    Article  CAS  PubMed  Google Scholar 

  20. Kidney Disease Outcomes Quality Initiative, National Kidney Foundation (2005) K/DOQI clinical practice guidelines for bone metabolism and disease in children with chronic kidney disease. Am J Kidney Dis 46[4 Suppl 1]:S1–S121

    Google Scholar 

  21. Schwartz GJ, Muñoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637

    Article  PubMed  PubMed Central  Google Scholar 

  22. Klaus G, Watson A, Edefonti A, Fischbach M, Rönnholm K, Schaefer F, Simkova E, Stefanidis CJ, Strazdins V, Vande Walle J, Schröder C, Zurowska A, Ekim M, European Pediatric Dialysis Working Group (EPDWG) (2006) Prevention and treatment of renal osteodystrophy in children on chronic renal failure: European guidelines. Pediatr Nephrol 21:151–159

    Article  CAS  PubMed  Google Scholar 

  23. Wesseling-Perry K (2010) FGF-23 in bone biology. Pediatr Nephrol 25:603–608

    Article  PubMed  Google Scholar 

  24. Kazama JJ, Kato H, Sato T, Shigematsu T, Fukagawa M, Iwasaki Y, Gejyo F (2002) Circulating osteoprotegerin is not removed through haemodialysis membrane. Nephrol Dial Transplant 17:1860–1861

    Article  CAS  PubMed  Google Scholar 

  25. Wittersheim E, Mesquita M, Demulder A, Guns M, Louis O, Melot C, Dratwa M, Bergmann P (2006) OPG, RANK-L, bone metabolism, and BMD in patients on peritoneal dialysis and hemodialysis. Clin Biochem 39:617–622

    Article  CAS  PubMed  Google Scholar 

  26. Wesseling K, Bakkalogly S, Salusky I (2008) Chronic kidney disease mineral and bone disorder in children. Pediatr Nephrol 23:195–207

    Article  PubMed  Google Scholar 

  27. Rogers A, Eastell R (2005) Review: Circulating osteoprotegerin and receptor activator for nuclear factor κB ligand: Clinical utility in metabolic bone disease assessment. J Clin Endocrinol Metab 90:6323–6331

    Article  CAS  PubMed  Google Scholar 

  28. Kuro-o M (2010) Overview of the FGF23-Klotho axis. Pediatr Nephrol 25:583–590

    Article  PubMed  Google Scholar 

  29. Gattineni J, Baum M (2010) Regulation of phosphate transport by fibroblast growth factor 23 (FGF23): implications for disorders of phosphate metabolism. Pediatr Nephrol 25:591–601

    Article  PubMed  Google Scholar 

  30. Krajisnik T, Björklund P, Marsell R, Ljunggren O, Akerström G, Jonsson KB, Westin G, Larsson TE (2007) Fibroblast growth factor-23 regulates parathyroid hormone and 1alpha-hydroxylase expression in cultured bovine parathyroid cells. J Endocrinol 195:125–131

    Article  CAS  PubMed  Google Scholar 

  31. Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, Goetz R, Kuro-o M, Mohammadi M, Sirkis R, Naveh-Many T, Silver J (2007) The parathyroid is a target organ for FGF23 in rats. J Clin Invest 117:4003–4008

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hasegawa H, Nagano N, Urakawa I, Yamazaki Y, Iijima K, Fujita T, Yamashita T, Fukumoto S, Shimada T (2010) Direct evidence for a causative role of FGF23 in the abnormal renal phosphate handling and vitamin D metabolism in rats with early-stage chronic kidney disease. Kidney Int 78:975–980

    Article  CAS  PubMed  Google Scholar 

  33. Magnusson P, Hansson S, Swolin-Eide D (2010) A prospective study of fibroblast growth factor-23 in children with chronic kidney disease. Scand J Clin Lab Invest 70:15–20

    Article  CAS  PubMed  Google Scholar 

  34. Wesseling-Perry K, Pereira RC, Wang H, Elashoff RM, Sahney S, Gales B, Jüppner H, Salusky IB (2009) Relationship between plasma fibroblast growth factor-23 concentration and bone mineralization in children with renal failure on peritoneal dialysis. J Clin Endocrinol Metab 94:511–517

    Article  CAS  PubMed  Google Scholar 

  35. Ureña P, De Vernejoul MC (1999) Circulating biochemical markers of bone remodeling in uremic patients. Kidney Int 55:2141–2156

    Article  PubMed  Google Scholar 

  36. Shidara K, Inaba M, Okuno S, Yamada S, Kumeda Y, Imanishi Y, Yamakawa T, Ishimura E, Nishizawa Y (2008) Serum levels of TRAP5b, a new bone resorption marker unaffected by renal dysfunction, as a useful marker of cortical bone loss in hemodialysis patients. Calcif Tissue Int 82:278–287

    Article  CAS  PubMed  Google Scholar 

  37. Seiler S, Heine GH, Fliser D (2009) Clinical relevance of FGF-23 in chronic kidney disease. Kidney Int 76[Suppl 114]:S34–S42

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterini Siomou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siomou, E., Challa, A., Printza, N. et al. Serum osteoprotegerin, RANKL and fibroblast growth factor-23 in children with chronic kidney disease. Pediatr Nephrol 26, 1105–1114 (2011). https://doi.org/10.1007/s00467-011-1870-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-011-1870-5

Keywords

Navigation