Skip to main content

Advertisement

Log in

Women and Alport syndrome

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

X-linked Alport syndrome (XLAS) is caused by mutations in type IV collagen causing sensorineural hearing loss, eye abnormalities, and progressive kidney dysfunction that results in near universal end-stage renal disease (ESRD) and the need for kidney transplantation in affected males. Until recent decades, the disease burden in heterozygous “carrier” females was largely minimized or ignored. Heterozygous females have widely variable disease outcomes, with some affected females exhibiting normal urinalysis and kidney function, while others develop ESRD and deafness. While the determinants of disease severity in females with XLAS are uncertain, skewing of X-chromosome inactivation has recently been found to play a role. This review will explore the natural history of heterozygous XLAS females, the determinants of disease severity, and the utility of using XLAS females as kidney donors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Kashtan CE (2009) Familial hematuria. Pediatr Nephrol 24:1951–1958

    Article  PubMed  Google Scholar 

  2. North American Pediatric Renal Transplant Cooperative Study (NAPRTCS) (2008) North American Pediatric Renal Transplant Cooperative Study Annual Report 2008. NAPRTCS, Boston

  3. Miner JH (1999) Renal basement membrane components. Kidney Int 56:2016–2024

    Article  PubMed  CAS  Google Scholar 

  4. Jais JP, Knebelmann B, Giatras I, De Marchi M, Rizzoni G, Renieri A, Weber M, Gross O, Netzer KO, Flinter F, Pirson Y, Dahan K, Wieslander J, Persson U, Tryggvason K, Martin P, Hertz JM, Schroder C, Sanak M, Carvalho MF, Saus J, Antignac C, Smeets H, Gubler MC (2003) X-linked Alport syndrome: natural history and genotype-phenotype correlations in girls and women belonging to 195 families: a "European Community Alport Syndrome Concerted Action" study. J Am Soc Nephrol 14:2603–2610

    Article  PubMed  Google Scholar 

  5. Jais JP, Knebelmann B, Giatras I, De Marchi M, Rizzoni G, Renieri A, Weber M, Gross O, Netzer KO, Flinter F, Pirson Y, Verellen C, Wieslander J, Persson U, Tryggvason K, Martin P, Hertz JM, Schroder C, Sanak M, Krejcova S, Carvalho MF, Saus J, Antignac C, Smeets H, Gubler MC (2000) X-linked Alport syndrome: natural history in 195 families and genotype- phenotype correlations in males. J Am Soc Nephrol 11:649–657

    PubMed  CAS  Google Scholar 

  6. Marcocci E, Uliana V, Bruttini M, Artuso R, Silengo MC, Zerial M, Bergesio F, Amoroso A, Savoldi S, Pennesi M, Giachino D, Rombola G, Fogazzi GB, Rosatelli C, Martinhago CD, Carmellini M, Mancini R, Di Costanzo G, Longo I, Renieri A, Mari F (2009) Autosomal dominant Alport syndrome: molecular analysis of the COL4A4 gene and clinical outcome. Nephrol Dial Transplant 24:1464–1471

    Article  PubMed  CAS  Google Scholar 

  7. Hamiwka LA, George DH, Grisaru S, Midgley JP (2007) Discordance between skin biopsy and kidney biopsy in an X-linked carrier of Alport syndrome. Pediatr Nephrol 22:1050–1053

    Article  PubMed  Google Scholar 

  8. Gale RE, Wheadon H, Boulos P, Linch DC (1994) Tissue specificity of X-chromosome inactivation patterns. Blood 83:2899–2905

    PubMed  CAS  Google Scholar 

  9. Alport AC (1927) Hereditary Familial Congenital Haemorrhagic Nephritis. Br Med J 1:504–506

    Article  PubMed  CAS  Google Scholar 

  10. Perkoff GT (1964) Familial aspects of diffuse renal diseases. Annu Rev Med 15:115–124

    Article  PubMed  CAS  Google Scholar 

  11. Albert MS, Leeming JM, Wigger HJ (1969) Familial nephritis associated with the nephrotic syndrome. In a family with severe involvement in females. Am J Dis Child 117:153–155

    PubMed  CAS  Google Scholar 

  12. Grunfeld JP, Noel LH, Hafez S, Droz D (1985) Renal prognosis in women with hereditary nephritis. Clin Nephrol 23:267–271

    PubMed  CAS  Google Scholar 

  13. Vetrie D, Flinter F, Bobrow M, Harris A (1992) X inactivation patterns in females with Alport's syndrome: a means of selecting against a deleterious gene? J Med Genet 29:663–666

    Article  PubMed  CAS  Google Scholar 

  14. Shimizu Y, Nagata M, Usui J, Hirayama K, Yoh K, Yamagata K, Kobayashi M, Koyama A (2006) Tissue-specific distribution of an alternatively spliced COL4A5 isoform and non-random X chromosome inactivation reflect phenotypic variation in heterozygous X-linked Alport syndrome. Nephrol Dial Transplant 21:1582–1587

    Article  PubMed  CAS  Google Scholar 

  15. Lyon MF (2002) X-chromosome inactivation and human genetic disease. Acta Paediatr Suppl 91:107–112

    Article  PubMed  CAS  Google Scholar 

  16. Ng K, Pullirsch D, Leeb M, Wutz A (2007) Xist and the order of silencing. EMBO Rep 8:34–39

    Article  PubMed  CAS  Google Scholar 

  17. Berletch JB, Yang F, Disteche CM (2010) Escape from X inactivation in mice and humans. Genome Biol 11:213

    PubMed  Google Scholar 

  18. Sharp A, Robinson D, Jacobs P (2000) Age- and tissue-specific variation of X chromosome inactivation ratios in normal women. Hum Genet 107:343–349

    Article  PubMed  CAS  Google Scholar 

  19. Guo C, Van Damme B, Vanrenterghem Y, Devriendt K, Cassiman JJ, Marynen P (1995) Severe alport phenotype in a woman with two missense mutations in the same COL4A5 gene and preponderant inactivation of the X chromosome carrying the normal allele. J Clin Invest 95:1832–1837

    Article  PubMed  CAS  Google Scholar 

  20. Iijima K, Nozu K, Kamei K, Nakayama M, Ito S, Matsuoka K, Ogata T, Kaito H, Nakanishi K, Matsuo M (2010) Severe Alport syndrome in a young woman caused by a t(X;1)(q22.3;p36.32) balanced translocation. Pediatr Nephrol 25:2165–2170

    Article  PubMed  Google Scholar 

  21. Nakanishi K, Iijima K, Kuroda N, Inoue Y, Sado Y, Nakamura H, Yoshikawa N (1998) Comparison of alpha5(IV) collagen chain expression in skin with disease severity in women with X-linked Alport syndrome. J Am Soc Nephrol 9:1433–1440

    PubMed  CAS  Google Scholar 

  22. Massella L, Onetti Muda A, Faraggiana T, Bette C, Renieri A, Rizzoni G (2003) Epidermal basement membrane alpha 5(IV) expression in females with Alport syndrome and severity of renal disease. Kidney Int 64:1787–1791

    Article  PubMed  CAS  Google Scholar 

  23. Rheault MN, Kren SM, Thielen BK, Mesa HA, Crosson JT, Thomas W, Sado Y, Kashtan CE, Segal Y (2004) Mouse model of X-linked Alport syndrome. J Am Soc Nephrol 15:1466–1474

    Article  PubMed  Google Scholar 

  24. Chadwick LH, Pertz LM, Broman KW, Bartolomei MS, Willard HF (2006) Genetic control of X chromosome inactivation in mice: definition of the Xce candidate interval. Genetics 173:2103–2110

    Article  PubMed  CAS  Google Scholar 

  25. Rheault MN, Kren SM, Hartich LA, Wall M, Thomas W, Mesa HA, Avner P, Lees GE, Kashtan CE, Segal Y (2010) X-inactivation modifies disease severity in female carriers of murine X-linked Alport syndrome. Nephrol Dial Transplant 25:764–769

    Article  PubMed  CAS  Google Scholar 

  26. Gross O, Weber M, Fries JW, Muller GA (2009) Living donor kidney transplantation from relatives with mild urinary abnormalities in Alport syndrome: long-term risk, benefit and outcome. Nephrol Dial Transplant 24:1626–1630

    Article  PubMed  Google Scholar 

  27. Kashtan CE (2009) Women with Alport syndrome: risks and rewards of kidney donation. Nephrol Dial Transplant 24:1369–1370

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Thank you to Dr. Clifford Kashtan for helpful comments on the manuscript and Dr. Yoav Segal for providing images of the heterozygous XLAS mouse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle N. Rheault.

Additional information

Answers

1) b

2) e

3) a

4) e

5) d

6) b

Review Questions (answers are given following the references)

Review Questions (answers are given following the references)

  1. 1.

    The percentage of Alport syndrome inherited in an X-linked manner is:

    1. a.

      100%

    2. b.

      80%

    3. c.

      50%

    4. d.

      20%

  2. 2.

    Heterozygous XLAS females can present with:

    1. a.

      Normal urinalysis

    2. b.

      Microscopic hematuria

    3. c.

      Proteinuria

    4. d.

      Sensorineural hearing loss

    5. e.

      All of the above

  3. 3.

    The following has been shown to influence disease outcome in XLAS heterozygous females

    1. a.

      X inactivation

    2. b.

      Ethnicity

    3. c.

      ACE inhibition

    4. d.

      Pregnancy

    5. e.

      Genotype

  4. 4.

    Which of the following are risk factors for renal disease progression in XLAS heterozygous females?

    1. a.

      Microscopic hematuria

    2. b.

      Proteinuria

    3. c.

      Use of hormone replacement therapy

    4. d.

      Hearing loss

    5. e.

      B and D

    6. f.

      B and C

  5. 5.

    X inactivation patterns in this tissue can predict X inactivation patterns in the kidney

    1. a.

      Blood lymphocytes

    2. b.

      Skin

    3. c.

      Urinary epithelium

    4. d.

      None of the above

  6. 6.

    Heterozygous XLAS females should be considered as kidney donors if they meet all of the following criteria except:

    1. a.

      Presence of microscopic hematuria

    2. b.

      Presence of proteinuria

    3. c.

      Absence of sensorineural hearing loss

    4. d.

      Absence of hypertension

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rheault, M.N. Women and Alport syndrome. Pediatr Nephrol 27, 41–46 (2012). https://doi.org/10.1007/s00467-011-1836-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-011-1836-7

Keywords

Navigation