Skip to main content

Advertisement

Log in

CKD-MBD after kidney transplantation

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Successful kidney transplantation corrects many of the metabolic abnormalities associated with chronic kidney disease (CKD); however, skeletal and cardiovascular morbidity remain prevalent in pediatric kidney transplant recipients and current recommendations from the Kidney Disease Improving Global Outcomes (KDIGO) working group suggest that bone disease—including turnover, mineralization, volume, linear growth, and strength—as well as cardiovascular disease be evaluated in all patients with CKD. Although few studies have examined bone histology after renal transplantation, current data suggest that bone turnover and mineralization are altered in the majority of patients and that biochemical parameters are poor predictors of bone histology in this population. Dual energy X-ray absorptiometry (DXA) scanning, although widely performed, has significant limitations in the pediatric transplant population and values have not been shown to correlate with fracture risk; thus, DXA is not recommended as a tool for the assessment of bone density. Newer imaging techniques, including computed tomography (quantitative CT (QCT), peripheral QCT (pQCT), high resolution pQCT (HR-pQCT) and magnetic resonance imaging (MRI)), which provide volumetric assessments of bone density and are able to discriminate bone microarchitecture, show promise in the assessment of bone strength; however, future studies are needed to define the value of these techniques in the diagnosis and treatment of renal osteodystrophy in pediatric renal transplant recipients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Soyka LA, Fairfield WP, Klibanski A (2000) Clinical review 117: hormonal determinants and disorders of peak bone mass in children. J Clin Endocrinol Metab 85:3951–3963

    CAS  PubMed  Google Scholar 

  2. KDIGO Work Group (2009) KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int 76:s1–s130

    Google Scholar 

  3. Bartosh SM, Leverson G, Robillard D, Sollinger HW (2003) Long-term outcomes in pediatric renal transplant recipients who survive into adulthood. Transplantation 76:1195–1200

    PubMed  Google Scholar 

  4. Groothoff JW, Cransberg K, Offringa M (2004) Long-term follow-up of renal transplantation in children: a Dutch cohort study. Transplantation 78:453–460

    PubMed  Google Scholar 

  5. Groothoff JW, Lilien MR, van de Kar NC, Wolff ED, Davin JC (2005) Cardiovascular disease as a late complication of end-stage renal disease in children. Pediatr Nephrol 20:374–379

    Google Scholar 

  6. Valta H, Makitie O, Ronnholm K, Jalanko H (2009) Bone health in children and adolescents after renal transplantation. J Bone Miner Res 24:1699–1708

    CAS  PubMed  Google Scholar 

  7. Helenius I, Remes V, Tervahartiala P, Salminen S, Sairanen H, Holmberg C, Palmu P, Helenius M, Peltonen J, Jalanko H (2006) Spine after solid organ transplantation in childhood: a clinical, radiographic, and magnetic resonance imaging analysis of 40 patients. Spine 31:2130–2136

    PubMed  Google Scholar 

  8. Helenius I, Remes V, Salminen S, Valta H, Mäkitie O, Holmberg C, Palmu P, Tervahartiala P, Sarna S, Helenius M, Peltonen J, Jalanko H (2006) Incidence and predictors of fractures in children after solid organ transplantation: a 5-year prospective, population-based study. J Bone Miner Res 21:380–387

    PubMed  Google Scholar 

  9. Garabedian M, Silve C, Levy-Bentolila D, Bourdeau A, Ulmann A, Nguyen TM, Lieberherr M, Broyer M, Balsan S (1981) Changes in plasma 1,25 and 24,25-dihydroxyvitamin D after renal transplantation in children. Kidney Int 20:403–410

    CAS  PubMed  Google Scholar 

  10. Tuchman S, Kalkwarf HJ, Zemel BS, Shults J, Wetzsteon RJ, Foerster D, Strife CF, Leonard MB (2010) Vitamin D deficiency and parathyroid hormone levels following renal transplantation in children. Pediatr Nephrol 25(12):2509–2516

    PubMed  Google Scholar 

  11. June CH, Thompson CB, Kennedy MS, Nims J, Thomas ED (1985) Profound hypomagnesemia and renal magnesium wasting associated with the use of cyclosporine for marrow transplantation. Transplantation 39:620–624

    CAS  PubMed  Google Scholar 

  12. Bhan I, Shah A, Holmes J, Isakova T, Gutierrez O, Burnett SM, Jüppner H, Wolf M (2006) Post-transplant hypophosphatemia: tertiary 'hyper-phosphatoninism'? Kidney Int 70:1486–1494

    CAS  PubMed  Google Scholar 

  13. Evenepoel P, Meijers BK, de Jonge H, Naesens M, Bammens B, Claes K, Kuypers D, Vanrenterghem Y (2008) Recovery of hyperphosphatoninism and renal phosphorus wasting one year after successful renal transplantation. Clin J Am Soc Nephrol 3:1829–1836

    PubMed  PubMed Central  Google Scholar 

  14. Evenepoel P, Naesens M, Claes K, Kuypers D, Vanrenterghem Y (2007) Tertiary 'hyperphosphatoninism' accentuates hypophosphatemia and suppresses calcitriol levels in renal transplant recipients. Am J Transplant 7:1193–1200

    CAS  PubMed  Google Scholar 

  15. Bacchetta J, Dubourg L, Harambat J, Ranchin B, Abou-Jaoude P, Arnaud S, Carlier MC, Richard M, Cochat P (2010) The influence of glomerular filtration rate and age on fibroblast growth factor 23 serum levels in pediatric chronic kidney disease. J Clin Endocrinol Metab 95:1741–1748

    CAS  PubMed  Google Scholar 

  16. D'Alessandro AM, Melzer JS, Pirsch JD, Sollinger HW, Kalayoglu M, Vernon WB, Belzer FO, Starling JR (1989) Tertiary hyperparathyroidism after renal transplantation: operative indications. Surgery 106:1049–1055

    CAS  PubMed  Google Scholar 

  17. Gwinner W, Suppa S, Mengel M, Hoy L, Kreipe HH, Haller H, Schwarz A (2005) Early calcification of renal allografts detected by protocol biopsies: causes and clinical implications. Am J Transplant 5:1934–1941

    PubMed  Google Scholar 

  18. Kruse AE, Eisenberger U, Frey FJ, Mohaupt MG (2005) The calcimimetic cinacalcet normalizes serum calcium in renal transplant patients with persistent hyperparathyroidism. Nephrol Dial Transplant 20:1311–1314

    CAS  PubMed  Google Scholar 

  19. Leca N, Laftavi M, Gundroo A, Kohli R, Min I, Karam J, Sridhar N, Blessios G, Venuto R, Pankewycz O (2006) Early and severe hyperparathyroidism associated with hypercalcemia after renal transplant treated with cinacalcet. Am J Transplant 6:2391–2395

    CAS  PubMed  Google Scholar 

  20. Szwarc I, Argiles A, Garrigue V, Delmas S, Chong G, Deleuze S, Mourad G (2006) Cinacalcet chloride is efficient and safe in renal transplant recipients with posttransplant hyperparathyroidism. Transplantation 82(5):675–680

    CAS  PubMed  Google Scholar 

  21. Srinivas TR, Schold JD, Womer KL, Kaplan B, Howard RJ, Bucci CM, Meier-Kriesche HU (2006) Improvement in hypercalcemia with cinacalcet after kidney transplantation. Clin J Am Soc Nephrol 1(2):323–326

    CAS  PubMed  Google Scholar 

  22. Borchhardt K, Sulzbacher I, Benesch T, Fodinger M, Sunder-Plassmann G, Haas M (2007) Low-turnover bone disease in hypercalcemic hyperparathyroidism after kidney transplantation. Am J Transplant 7(11):2515–2521

    CAS  PubMed  Google Scholar 

  23. Borchhardt KA, Diarra D, Sulzbacher I, Benesch T, Haas M, Sunder-Plassmann G (2010) Cinacalcet decreases bone formation rate in hypercalcemic hyperparathyroidism after kidney transplantation. Am J Nephrol 31(6):482–489

    PubMed  Google Scholar 

  24. Coburn JW, Koppel MH, Brickman AS, Massry SG (1973) Study of intestinal absorption of calcium in patients with renal failure. Kidney Int 3:264–272

    CAS  PubMed  Google Scholar 

  25. Holick MF (1987) Vitamin D and the kidney. Kidney Int 32:912–929

    CAS  PubMed  Google Scholar 

  26. Clemens TL, Adams JS, Henderson SL, Holick MF (1982) Increased skin pigment reduces the capacity of skin to synthesise vitamin D3. Lancet 1:74–76

    CAS  PubMed  Google Scholar 

  27. Helvig CF, Cuerrier D, Hosfield CM, Ireland B, Kharebov AZ, Kim JW, Ramjit NJ, Ryder K, Tabash SP, Herzenberg AM, Epps TM, Petkovich M (2010) Dysregulation of renal vitamin D metabolism in the uremic rat. Kidney Int 78(5):463–472

    CAS  PubMed  Google Scholar 

  28. Julian BA, Laskow DA, Dubovsky J, Dubovsky EV, Curtis JJ, Quarles LD (1991) Rapid loss of vertebral mineral density after renal transplantation. N Engl J Med 325:544–550

    CAS  PubMed  Google Scholar 

  29. Velasquez-Forero F, Mondragon A, Herrero B, Pena JC (1996) Adynamic bone lesion in renal transplant recipients with normal renal function. Nephrol Dial Transplant 11(Suppl 3):58–64

    PubMed  Google Scholar 

  30. Carlini RG, Rojas E, Arminio A, Weisinger JR, Bellorin-Font E (1998) What are the bone lesions in patients with more than four years of a functioning renal transplant? Nephrol Dial Transplant 13(Suppl 3):103–104

    PubMed  Google Scholar 

  31. Lehmann G, Ott U, Stein G, Steiner T, Wolf G (2007) Renal osteodystrophy after successful renal transplantation: a histomorphometric analysis in 57 patients. Transplant Proc 39:3153–3158

    CAS  PubMed  Google Scholar 

  32. Cruz EA, Lugon JR, Jorgetti V, Draibe SA, Carvalho AB (2004) Histologic evolution of bone disease 6 months after successful kidney transplantation. Am J Kidney Dis 44:747–756

    PubMed  Google Scholar 

  33. Sanchez CP, Salusky IB, Kuizon BD, Ramirez JA, Gales B, Ettenger RB, Goodman WG (1998) Bone disease in children and adolescents undergoing successful renal transplantation. Kidney Int 53:1358–1364

    CAS  PubMed  Google Scholar 

  34. Hahn TJ, Halstead LR, Baran DT (1981) Effects off short-term glucocorticoid administration on intestinal calcium absorption and circulating vitamin D metabolite concentrations in man. J Clin Endocrinol Metab 52:111–115

    CAS  PubMed  Google Scholar 

  35. McIntyre HD, Menzies B, Rigby R, Perry-Keene DA, Hawley CM, Hardie IR (1995) Long-term bone loss after renal transplantation: comparison of immunosuppressive regimens. Clin Transplant 9:20–24

    CAS  PubMed  Google Scholar 

  36. Ponticelli C, Aroldi A (2001) Osteoporosis after organ transplantation. Lancet 357:1623

    CAS  PubMed  Google Scholar 

  37. Grotz W, Mundinger A, Gugel B, Exner V, Reichelt A, Schollmeyer P (1994) Missing impact of cyclosporine on osteoporosis in renal transplant recipients. Transplant Proc 26:2652–2653

    CAS  PubMed  Google Scholar 

  38. Allen DB, Goldberg BD (1992) Stimulation of collagen synthesis and linear growth by growth hormone in glucocorticoid-treated children. Pediatrics 89:416–421

    CAS  PubMed  Google Scholar 

  39. Root AW, Bongiovanni AM, Eberlein WR (1969) Studies of the secretion and metabolic effects of human growth hormone in children with glucocorticoid-induced growth retardation. J Pediatr 75:826–832

    CAS  PubMed  Google Scholar 

  40. Ortoft G, Oxlund H (1996) Qualitative alterations of cortical bone in female rats after long-term administration of growth hormone and glucocorticoid. Bone 18:581–590

    CAS  PubMed  Google Scholar 

  41. Wehrenberg WB, Bergman PJ, Stagg L, Ndon J, Giustina A (1990) Glucocorticoid inhibition of growth in rats: partial reversal with somatostatin antibodies. Endocrinology 127:2705–2708

    CAS  PubMed  Google Scholar 

  42. Rubin MR, Bilezikian JP (2002) Clinical review 151: the role of parathyroid hormone in the pathogenesis of glucocorticoid-induced osteoporosis: a re-examination of the evidence. J Clin Endocrinol Metab 87:4033–4041

    CAS  PubMed  Google Scholar 

  43. Aubia J, Serrano S, Marinoso L, Hojman L, Diez A, Lloveras J, Masramon J (1988) Osteodystrophy of diabetics in chronic dialysis: a histomorphometric study. Calcif Tissue Int 42:297–301

    CAS  PubMed  Google Scholar 

  44. Movsowitz C, Epstein S, Fallon M, Ismail F, Thomas S (1988) Cyclosporin-A in vivo produces severe osteopenia in the rat: effect of dose and duration of administration. Endocrinology 123:2571–2577

    CAS  PubMed  Google Scholar 

  45. Alvarez-Garcia O, Garcia-Lopez E, Loredo V, Gil-Peña H, Rodríguez-Suárez J, Ordóñez FA, Carbajo-Pérez E, Santos F (2010) Rapamycin induces growth retardation by disrupting angiogenesis in the growth plate. Kidney Int 78:561–568

    CAS  PubMed  Google Scholar 

  46. Bryer HP, Isserow JA, Armstrong EC, Mann GN, Rucinski B, Buchinsky FJ, Romero DF, Epstein S (1995) Azathioprine alone is bone sparing and does not alter cyclosporin A-induced osteopenia in the rat. J Bone Miner Res 10:132–138

    CAS  PubMed  Google Scholar 

  47. Toussaint ND, Pedagogos E, Lau KK, Heinze S, Becker GJ, Beavis J, Polkinghorne KR, Damasiewicz MJ, Kerr PG (2010) Lateral lumbar X-ray assessment of abdominal aortic calcification in Australian haemodialysis patients. Nephrology (Carlton). doi:https://doi.org/10.1111/j.1440-1797.2010.01420.x

  48. Bacchetta J, Boutroy S, Juillard L, Vilayphiou N, Guebre-Egziabher F, Pelletier S, Delmas PD, Fouque D (2009) Bone imaging and chronic kidney disease: will high-resolution peripheral tomography improve bone evaluation and therapeutic management? J Ren Nutr 19:44–49

    PubMed  Google Scholar 

  49. Weber LT, Mehls O (2010) Limitations of dual x-ray absorptiometry in children with chronic kidney disease. Pediatr Nephrol 25:3–5

    PubMed  Google Scholar 

  50. Bianchi ML, Baim S, Bishop NJ, Gordon CM, Hans DB, Langman CB, Leonard MB, Kalkwarf HJ, International Society for Clinical Densitometry (ISCD) (2010) Official positions of the International Society for Clinical Densitometry (ISCD) on DXA evaluation in children and adolescents. Pediatr Nephrol 25:37–47

    PubMed  Google Scholar 

  51. Saland JM, Goode ML, Haas DL, Romano TA, Seikaly MG (2001) The prevalence of osteopenia in pediatric renal allograft recipients varies with the method of analysis. Am J Transplant 1:243–250

    CAS  PubMed  Google Scholar 

  52. Chesney RW (2004) Bone mineral density in chronic renal insufficiency and end-stage renal disease: how to interpret the scans. J Pediatr Endocrinol Metab 17(Suppl 4):1327–1332

    PubMed  Google Scholar 

  53. Bachrach LK (2006) Measuring bone mass in children: can we really do it? Horm Res 65(Suppl 2):11–16

    CAS  PubMed  Google Scholar 

  54. Burrows M, Liu D, McKay H (2010) High-resolution peripheral QCT imaging of bone micro-structure in adolescents. Osteoporos Int 21:515–520

    CAS  PubMed  Google Scholar 

  55. Bacchetta J, Fargue S, Boutroy S, Basmaison O, Vilayphiou N, Plotton I, Guebre-Egziabher F, Dohin B, Kohler R, Cochat P (2010) Bone metabolism in oxalosis: a single-center study using new imaging techniques and biomarkers. Pediatr Nephrol 25:1081–1089

    PubMed  Google Scholar 

  56. Ruth EM, Weber LT, Schoenau E, Wunsch R, Seibel MJ, Feneberg R, Mehls O, Tönshoff B (2004) Analysis of the functional muscle-bone unit of the forearm in pediatric renal transplant recipients. Kidney Int 66:1694–1706

    PubMed  Google Scholar 

  57. Mussa A, Porta F, Gianoglio B, Gaido M, Nicolosi MG, De Terlizzi F, de Sanctis C, Coppo R (2007) Bone alterations in children and young adults with renal transplant assessed by phalangeal quantitative ultrasound. Am J Kidney Dis 50:441–449

    PubMed  Google Scholar 

  58. (2008) North American Pediatric Renal Transplant Cooperative Study (NAPRTCS) Annual Report

  59. Quesada JM, Serrano I, Borrego F, Martin A, Pena J, Solana R (1995) Calcitriol effect on natural killer cells from hemodialyzed and normal subjects. Calcif Tissue Int 56:113–117

    CAS  PubMed  Google Scholar 

  60. Sarwal MM, Yorgin PD, Alexander S, Millan MT, Belson A, Belanger N, Granucci L, Major C, Costaglio C, Sanchez J, Orlandi P, Salvatierra O Jr (2001) Promising early outcomes with a novel, complete steroid avoidance immunosuppression protocol in pediatric renal transplantation. Transplantation 72:13–21

    CAS  PubMed  Google Scholar 

  61. Sarwal MM, Vidhun JR, Alexander SR, Satterwhite T, Millan M, Salvatierra O Jr (2003) Continued superior outcomes with modification and lengthened follow-up of a steroid-avoidance pilot with extended daclizumab induction in pediatric renal transplantation. Transplantation 76:1331–1339

    CAS  Google Scholar 

  62. Hokken-Koelega AC, van Zaal MA, van Bergen W, de Ridder MA, Stijnen T, Wolff ED, de Jong RC, Donckerwolcke RA, de Muinck Keizer-Schrama SM, Drop SL (1994) Final height and its predictive factors after renal transplantation in childhood. Pediatr Res 36:323–328

    CAS  Google Scholar 

  63. Grenda R, Watson A, Trompeter R, Tönshoff B, Jaray J, Fitzpatrick M, Murer L, Vondrak K, Maxwell H, van Damme-Lombaerts R, Loirat C, Mor E, Cochat P, Milford DV, Brown M, Webb NJ (2010) A randomized trial to assess the impact of early steroid withdrawal on growth in pediatric renal transplantation: the TWIST study. Am J Transplant 10:828–836

    CAS  PubMed  Google Scholar 

  64. Goodman WG, Goldin J, Kuizon BD, Yoon C, Gales B, Sider D, Wang Y, Chung J, Emerick A, Greaser L, Elashoff RM, Salusky IB (2000) Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N Engl J Med 342:1478–1483

    CAS  Google Scholar 

  65. Chavers BM, Li S, Collins AJ, Herzog CA (2002) Cardiovascular disease in pediatric chronic dialysis patients. Kidney Int 62:648–653

    PubMed  Google Scholar 

  66. Moe SM, Duan D, Doehle BP, O'Neill KD, Chen NX (2003) Uremia induces the osteoblast differentiation factor Cbfa1 in human blood vessels. Kidney Int 63:1003–1011

    CAS  PubMed  Google Scholar 

  67. Jono S, McKee MD, Murry CE, Shioi A, Nishizawa Y, Mori K, Morii H, Giachelli CM (2000) Phosphate regulation of vascular smooth muscle cell calcification. Circ Res 87:E10–E17

    CAS  PubMed  Google Scholar 

  68. Ahmed S, O'Neill KD, Hood AF, Evan AP, Moe SM (2001) Calciphylaxis is associated with hyperphosphatemia and increased osteopontin expression by vascular smooth muscle cells. Am J Kidney Dis 37:1267–1276

    CAS  PubMed  Google Scholar 

  69. Bostrom K (2001) Insights into the mechanism of vascular calcification. Am J Cardiol 88:20E–22E

    CAS  PubMed  Google Scholar 

  70. Moe SM, O'Neill KD, Duan D, Ahmed S, Chen NX, Leapman SB, Fineberg N, Kopecky K (2002) Medial artery calcification in ESRD patients is associated with deposition of bone matrix proteins. Kidney Int 61:638–647

    PubMed  Google Scholar 

  71. Chen NX, O'Neill KD, Duan D, Moe SM (2002) Phosphorus and uremic serum up-regulate osteopontin expression in vascular smooth muscle cells. Kidney Int 62:1724–1731

    CAS  PubMed  Google Scholar 

  72. Schafer C, Heiss A, Schwarz A, Westenfeld R, Ketteler M, Floege J, Muller-Esterl W, Schinke T, Jahnen-Dechent W (2003) The serum protein alpha 2-Heremans-Schmid glycoprotein/fetuin-A is a systemically acting inhibitor of ectopic calcification. J Clin Invest 112:357–366

    PubMed  PubMed Central  Google Scholar 

  73. Schinke T, Amendt C, Trindl A, Poschke O, Muller-Esterl W, Jahnen-Dechent W (1996) The serum protein alpha2-HS glycoprotein/fetuin inhibits apatite formation in vitro and in mineralizing calvaria cells. A possible role in mineralization and calcium homeostasis. J Biol Chem 271:20789–20796

    CAS  PubMed  Google Scholar 

  74. Sweatt A, Sane DC, Hutson SM, Wallin R (2003) Matrix Gla protein (MGP) and bone morphogenetic protein-2 in aortic calcified lesions of aging rats. J Thromb Haemost 1:178–185

    CAS  PubMed  Google Scholar 

  75. Koh N, Fujimori T, Nishiguchi S, Tamori A, Shiomi S, Nakatani T, Sugimura K, Kishimoto T, Kinoshita S, Kuroki T, Nabeshima Y (2001) Severely reduced production of klotho in human chronic renal failure kidney. Biochem Biophys Res Commun 280:1015–1020

    CAS  PubMed  Google Scholar 

  76. Imanishi Y, Inaba M, Nakatsuka K, Nagasue K, Okuno S, Yoshihara A, Miura M, Miyauchi A, Kobayashi K, Miki T, Shoji T, Ishimura E, Nishizawa Y (2004) FGF-23 in patients with end-stage renal disease on hemodialysis. Kidney Int 65:1943–1946

    CAS  PubMed  Google Scholar 

  77. Parker BD, Schurgers LJ, Brandenburg VM, Christenson RH, Vermeer C, Ketteler M, Shlipak MG, Whooley MA, Ix JH (2010) The associations of fibroblast growth factor 23 and uncarboxylated matrix Gla protein with mortality in coronary artery disease: the heart and soul study. Ann Intern Med 152:640–648

    PubMed  PubMed Central  Google Scholar 

  78. Gutierrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H, Shah A, Smith K, Lee H, Thadhani R, Jüppner H, Wolf M (2008) Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 359:584–592

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Seiler S, Reichart B, Roth D, Seibert E, Fliser D, Heine GH (2010) FGF-23 and future cardiovascular events in patients with chronic kidney disease before initiation of dialysis treatment. Nephrol Dial Transplant 25:3983–3989

    CAS  PubMed  Google Scholar 

  80. Ishitani MB, Milliner DS, Kim DY, Bohorquez HE, Heimbach JK, Sheedy PF 2nd, Morgenstern BZ, Gloor JM, Murphy JG, McBane RD, Bielak LF, Peyser PA, Stegall MD (2005) Early subclinical coronary artery calcification in young adults who were pediatric kidney transplant recipients. Am J Transplant 5:1689–1693

    PubMed  Google Scholar 

  81. Moe SM, O'Neill KD, Reslerova M, Fineberg N, Persohn S, Meyer CA (2004) Natural history of vascular calcification in dialysis and transplant patients. Nephrol Dial Transplant 19:2387–2393

    PubMed  Google Scholar 

  82. Hristova M, Van BC, Schurgers LJ, Lanske B, Danziger J (2010) Rapidly progressive severe vascular calcification sparing the kidney allograft following warfarin initiation. Am J Kidney Dis 56:1158–1162

    PubMed  PubMed Central  Google Scholar 

  83. Shroff RC, McNair R, Skepper JN, Figg N, Schurgers LJ, Deanfield J, Rees L, Shanahan CM (2010) Chronic mineral dysregulation promotes vascular smooth muscle cell adaptation and extracellular matrix calcification. J Am Soc Nephrol 21:103–112

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Milliner DS, Zinsmeister AR, Lieberman E, Landing B (1990) Soft tissue calcification in pediatric patients with end-stage renal disease. Kidney Int 38(5):931–936

    CAS  Google Scholar 

  85. Oh J, Wunsch R, Turzer M, Bahner M, Raggi P, Querfeld U, Mehls O, Schaefer F (2002) Advanced coronary and carotid arteriopathy in young adults with childhood-onset chronic renal failure. Circulation 106:100–105

    Google Scholar 

  86. Mitsnefes MM, Kimball TR, Witt SA, Glascock BJ, Khoury PR, Daniels SR (2004) Abnormal carotid artery structure and function in children and adolescents with successful renal transplantation. Circulation 110:97–101

    PubMed  Google Scholar 

  87. Bilginer Y, Ozaltin F, Basaran C, Aki TF, Karabulut E, Duzova A, Besbas N, Topaloglu R, Ozen S, Bakkaloglu M, Al B (2007) Carotid intima-media thickness in children and young adults with renal transplant: internal carotid artery vs. common carotid artery. Pediatr Transplant 11:888–894

    CAS  PubMed  Google Scholar 

  88. van Summeren MJ, Hameleers JM, Schurgers LJ, Hoeks AP, Uiterwaal CS, Krüger T, Vermeer C, Kuis W, Lilien MR (2008) Circulating calcification inhibitors and vascular properties in children after renal transplantation. Pediatr Nephrol 23:985–993

    PubMed  Google Scholar 

  89. Delucchi A, Dinamarca H, Gainza H, Whitttle C, Torrealba I, Iniguez G (2008) Carotid intima-media thickness as a cardiovascular risk marker in pediatric end-stage renal disease patients on dialysis and in renal transplantation. Transplant Proc 40:3244–3246

    CAS  PubMed  Google Scholar 

  90. Siirtola A, Kallio T, Ala-Houhala M, Lehtimäki T, Solakivi T, Antikainen M, Salo MK, Holmberg C (2010) Carotid intima-media thickness after pediatric renal or liver transplantation at high-resolution B-mode ultrasonography. Transplant Proc 42:1695–1698

    CAS  PubMed  Google Scholar 

  91. Moe S, Drueke T, Cunningham J, Goodman W, Martin K, Olgaard K, Ott S, Sprague S, Lameire N, Eknoyan G (2006) Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 69:1945–1953

    CAS  PubMed  Google Scholar 

  92. Patel S, Kwan JT, McCloskey E, McGee G, Thomas G, Johnson D, Wills R, Ogunremi L, Barron J (2001) Prevalence and causes of low bone density and fractures in kidney transplant patients. J Bone Miner Res 16:1863–1870

    CAS  PubMed  Google Scholar 

  93. Lippuner K, Casez JP, Horber FF, Jaeger P (1998) Effects of deflazacort versus prednisone on bone mass, body composition, and lipid profile: a randomized, double-blind study in kidney transplant patients. J Clin Endocrinol Metab 83:3795–3802

    CAS  PubMed  Google Scholar 

  94. Fine RN, Yadin O, Nelson PA, Pyke-Grimm K, Boechat MI, Lippe BH, Sherman BM, Ettenger RB, Kamil E (1991) Recombinant human growth hormone treatment of children following renal transplantation. Pediatr Nephrol 5:147–151

    CAS  PubMed  Google Scholar 

  95. Cueto-Manzano AM, Konel S, Freemont AJ, Adams JE, Mawer B, Gokal R, Hutchison AJ (2000) Effect of 1, 25-dihydroxyvitamin D3 and calcium carbonate on bone loss associated with long-term renal transplantation. Am J Kidney Dis 35:227–236

    CAS  PubMed  Google Scholar 

  96. Fan SL, Almond MK, Ball E, Evans K, Cunningham J (2000) Pamidronate therapy as prevention of bone loss following renal transplantation. Kidney Int 57:684–690

    CAS  PubMed  Google Scholar 

  97. Amerling R, Harbord NB, Pullman J, Feinfeld DA (2010) Bisphosphonate use in chronic kidney disease: association with adynamic bone disease in a bone histology series. Blood Purif 29:293–299

    CAS  PubMed  Google Scholar 

  98. Holdaas H, Fellstrom B, Cole E, Nyberg G, Olsson AG, Pedersen TR, Madsen S, Grönhagen-Riska C, Neumayer HH, Maes B, Ambühl P, Hartmann A, Staffler B, Jardine AG, Assessment of LEscol in Renal Transplantation (ALERT) Study Investigators (2005) Long-term cardiac outcomes in renal transplant recipients receiving fluvastatin: the ALERT extension study. Am J Transplant 5:2929–2936

    CAS  PubMed  Google Scholar 

  99. Cui Q, Wang GJ, Su CC, Balian G (1997) The Otto Aufranc Award. Lovastatin prevents steroid induced adipogenesis and osteonecrosis. Clin Orthop Relat Res 344:8–19

    Google Scholar 

  100. Maritz FJ, Conradie MM, Hulley PA, Gopal R, Hough S (2001) Effect of statins on bone mineral density and bone histomorphometry in rodents. Arterioscler Thromb Vasc Biol 21:1636–1641

    CAS  PubMed  Google Scholar 

  101. Pritchett JW (2001) Statin therapy decreases the risk of osteonecrosis in patients receiving steroids. Clin Orthop Relat Res 386:173–178

    Google Scholar 

  102. Ajmal M, Matas AJ, Kuskowski M, Cheng EY (2009) Does statin usage reduce the risk of corticosteroid-related osteonecrosis in renal transplant population? Orthop Clin North Am 40:235–239

    PubMed  PubMed Central  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine Wesseling-Perry.

Additional information

ANSWERS:

1. C

2. D

3. B

4. A

5. B

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wesseling-Perry, K., Bacchetta, J. CKD-MBD after kidney transplantation. Pediatr Nephrol 26, 2143–2151 (2011). https://doi.org/10.1007/s00467-011-1829-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-011-1829-6

Keywords

Navigation