Skip to main content

Advertisement

Log in

Regulation of kidney development by histone deacetylases

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

There is accumulating evidence that gene expression can be regulated independently of DNA sequence changes, also called epigenetic modifications. Histone deacetylases (HDACs), a specific epigenetic group of enzymes, dynamically and reversibly removes acetyl groups from histone tails projecting from the nucleosome. Clinically, valproic acid fetopathy sheds some insight into the effects of altered HDACs on human embryonic development, since valproic acid is an antiepileptic drug and an HDAC inhibitor. The fetal anomalies include severe renal dysgenesis, supporting the role played by HDACs in human kidney development. Our recent studies have shown that HDACs regulate the transcriptional networks required for controlling the cell cycle, Wnt signaling, and the pathway upstream of the GDNF/RET signaling pathway in the developing kidney. Here, we describe novel HDAC target genes not previously implicated in renal development based on studies using genome-wide microarrays. These genes can be divided into transcription factors, modulators of matrix biology, chromatin remodelers, and DNA repair genes. We also report that HDACs are requisite for tissue-specific gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cheng X, Blumenthal RM (2010) Coordinated chromatin control: structural and functional linkage of DNA and histone methylation. Biochemistry 49:2999–3008

    Article  CAS  Google Scholar 

  2. Vincent A, Van Seuningen I (2009) Epigenetics, stem cells and epithelial cell fate. Differentiation 78:99–107

    Article  CAS  Google Scholar 

  3. Gui CY, Ngo L, Xu WS, Richon VM, Marks PA (2004) Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proc Natl Acad Sci USA 101:1241–1246

    Article  CAS  Google Scholar 

  4. Smith CL (2008) A shifting paradigm: histone deacetylases and transcriptional activation. Bioessays 30:15–24

    Article  CAS  Google Scholar 

  5. Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10:32–42

    Article  CAS  Google Scholar 

  6. Lagger G, O’Carroll D, Rembold M, Khier H, Tischler J, Weitzer G, Schuettengruber B, Hauser C, Brunmeir R, Jenuwein T, Seiser C (2002) Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J 21:2672–2681

    Article  CAS  Google Scholar 

  7. Montgomery RL, Davis CA, Potthoff MJ, Haberland M, Fielitz J, Qi X, Hill JA, Richardson JA, Olson EN (2007) Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev 21:1790–1802

    Article  CAS  Google Scholar 

  8. Trivedi CM, Luo Y, Yin Z, Zhang M, Zhu W, Wang T, Floss T, Goettlicher M, Noppinger PR, Wurst W, Ferrari VA, Abrams CS, Gruber PJ, Epstein JA (2007) Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nat Med 13:324–331

    Article  CAS  Google Scholar 

  9. Vega RB, Matsuda K, Oh J, Barbosa AC, Yang X, Meadows E, McAnally J, Pomajzl C, Shelton JM, Richardson JA, Karsenty G, Olson EN (2004) Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell 119:555–566

    Article  CAS  Google Scholar 

  10. Chang S, McKinsey TA, Zhang CL, Richardson JA, Hill JA, Olson EN (2004) Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol 24:8467–8476

    Article  CAS  Google Scholar 

  11. Chang S, Young BD, Li S, Qi X, Richardson JA, Olson EN (2006) Histone deacetylase 7 maintains vascular integrity by repressing matrix metalloproteinase 10. Cell 126:321–334

    Article  CAS  Google Scholar 

  12. Yu J, McMahon AP, Valerius MT (2004) Recent genetic studies of mouse kidney development. Curr Opin Genet Dev 14:550–557

    Article  CAS  Google Scholar 

  13. Reidy KJ, Rosenblum ND (2009) Cell and molecular biology of kidney development. Semin Nephrol 29:321–337

    Article  CAS  Google Scholar 

  14. Koren G, Nava-Ocampo AA, Moretti ME, Sussman R, Nulman I (2006) Major malformations with valproic acid. Can Fam Physician 52:441–442; 444; 447

    PubMed  PubMed Central  Google Scholar 

  15. Xu WS, Parmigiani RB, Marks PA (2007) Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 26:5541–5552

    Article  CAS  Google Scholar 

  16. Su GH, Sohn TA, Ryu B, Kern SE (2000) A novel histone deacetylase inhibitor identified by high-throughput transcriptional screening of a compound library. Cancer Res 60:3137–3142

    CAS  PubMed  Google Scholar 

  17. Schanstra JP, Bachvarova M, Neau E, Bascands JL, Bachvarov D (2007) Gene expression profiling in the remnant kidney model of wild type and kinin B1 and B2 receptor knockout mice. Kidney Int 72:442–454

    Article  CAS  Google Scholar 

  18. Saifudeen Z, Dipp S, Stefkova J, Yao X, Lookabaugh S, El-Dahr SS (2009) p53 regulates metanephric development. J Am Soc Nephrol 20:2328–2337

    Article  CAS  Google Scholar 

  19. Bridgewater D, Cox B, Cain J, Lau A, Athaide V, Gill PS, Kuure S, Sainio K, Rosenblum ND (2008) Canonical WNT/beta-catenin signaling is required for ureteric branching. Dev Biol 317:83–94

    Article  CAS  Google Scholar 

  20. Carroll TJ, Park JS, Hayashi S, Majumdar A, McMahon AP (2005) Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev Cell 9:283–292

    Article  CAS  Google Scholar 

  21. Kim D, Dressler GR (2007) PTEN modulates GDNF/RET mediated chemotaxis and branching morphogenesis in the developing kidney. Dev Biol 307:290–299

    Article  CAS  Google Scholar 

  22. Ritvos O, Tuuri T, Eramaa M, Sainio K, Hilden K, Saxen L, Gilbert SF (1995) Activin disrupts epithelial branching morphogenesis in developing glandular organs of the mouse. Mech Dev 50:229–245

    Article  CAS  Google Scholar 

  23. Lupien M, Eeckhoute J, Meyer CA, Wang Q, Zhang Y, Li W, Carroll JS, Liu XS, Brown M (2008) FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell 132:958–970

    Article  CAS  Google Scholar 

  24. Kultima K, Jergil M, Salter H, Gustafson AL, Dencker L, Stigson M (2010) Early transcriptional responses in mouse embryos as a basis for selection of molecular markers predictive of valproic acid teratogenicity. Reprod Toxicol 30:457–468

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant RO1-DK079886.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir S. El-Dahr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenberg, S.L., Chen, S., McLaughlin, N. et al. Regulation of kidney development by histone deacetylases. Pediatr Nephrol 26, 1445–1452 (2011). https://doi.org/10.1007/s00467-011-1796-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-011-1796-y

Keywords

Navigation