Skip to main content

Advertisement

Log in

Renal malformations associated with mutations of developmental genes: messages from the clinic

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Renal tract malformations (RTMs) account for about 40% of children with end-stage renal failure. RTMs can be caused by mutations of genes normally active in the developing kidney and lower renal tract. Moreover, some RTMs occur in the context of multi-organ malformation syndromes. For these reasons, and because genetic testing is becoming more widely available, pediatric nephrologists should work closely with clinical geneticists to make genetic diagnoses in children with RTMs, followed by appropriate family counseling. Here we highlight families with renal cysts and diabetes, renal coloboma and Fraser syndromes, and a child with microdeletion of chromosome 19q who had a rare combination of malformations. Such diagnoses provide families with often long-sought answers to the question “why was our child born with kidney disease”. Precise genetic diagnoses will also help to define cohorts of children with RTMs for long-term clinical outcome studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. The Renal Association, UK Renal Registry (2006) The Ninth Annual Report. Available at http://www.renalreg.com/Reports/2006.html

  2. North American Pediatric Renal Trials and Collaborative Studies (NAPRTCS) (2008) Annual Report. Available at https://web.emmes.com/study/ped/annlrept/Annual%20Report%20-2008.pdf

  3. Lewis MA, Shaw J, Sinha M, Adalat S, Hussain F, Inward C (2009) UK Renal Registry 11th Annual Report (December 2008): Chapter 13, Demography of the UK paediatric renal replacement therapy population. Nephron Clin Pract 111(Suppl 1):c257–c267

    Article  PubMed  Google Scholar 

  4. Neild GH (2009) What do we know about chronic renal failure in young adults? I. Primary renal disease. Pediatr Nephrol 24:1913–1919

    Article  PubMed  Google Scholar 

  5. Kerecuk L, Schreuder MF, Woolf AS (2008) Human renal tract malformations: perspectives for nephrologists. Nat Clin Pract Nephrol 4:312–325

    Article  PubMed  Google Scholar 

  6. Salomon R, Tellier AL, Attie-Bitach T, Amiel J, Vekemans M, Lyonnet S, Dureau P, Niaudet P, Gubler MC, Broyer M (2001) PAX2 mutations in oligomeganephronia. Kidney Int 59:457–462

    Article  CAS  PubMed  Google Scholar 

  7. Hiraoka M, Tsukahara H, Ohshima Y, Kasuga K, Ishihara Y, Mayumi M (2002) Renal aplasia is the predominant cause of congenital solitary kidneys. Kidney Int 61:1840–1844

    Article  PubMed  Google Scholar 

  8. Winyard PJ, Nauta J, Lirenman DS, Hardman P, Sams VR, Risdon RA, Woolf AS (1996) Deregulation of cell survival in cystic and dysplastic renal development. Kidney Int 49:135–146

    Article  CAS  PubMed  Google Scholar 

  9. Woolf AS, Pitera JE (2009) Chapter 1: embryology. In: Avner ED, Harmon WE, Niaudet P (eds) Pediatric nephrology, 6th edn. Springer, Berlin Heidelberg New York, pp 3–30

  10. Lye CM, Fasano L, Woolf AS (2010) Ureter myogenesis: putting Teashirt into context. J Am Soc Nephrol 21:24–30

    Article  CAS  PubMed  Google Scholar 

  11. Farrugia MK, Woolf AS (2010) Congenital urinary bladder outlet obstruction. Fetal Matern Med Rev 21:55–73

    Article  Google Scholar 

  12. Tse HK, Leung MB, Woolf AS, Menke AL, Hastie ND, Gosling JA, Pang CP, Shum AS (2005) Implication of Wt1 in the pathogenesis of nephrogenic failure in a mouse model of retinoic acid-induced caudal regression syndrome. Am J Pathol 166:1295–1307

    CAS  PubMed  Google Scholar 

  13. Chan S-K, Riley PR, Price KL, McElduff F, Winyard PJ, Welham SJ, Woolf AS, Long DA (2010) Corticosteroid-induced kidney dysmorphogenesis is associated with deregulated expression of known cystogenic molecules, as well as Indian hedgehog. Am J Physiol Ren Physiol 298:F346–F356

    Article  CAS  Google Scholar 

  14. Welham SJM, Riley PR, Wade A, Hubank M, Woolf A (2005) Maternal diet programs embryonic kidney gene expression. Physiol Genomics 22:48–56

    Article  CAS  PubMed  Google Scholar 

  15. van Heyningen V, Bickmore WA, Seawright A, Fletcher JM, Maule J, Fekete G, Gessler M, Bruns GA, Huerre-Jeanpierre C, Junien C, Williams BRG, Hastie ND (1990) Role for the Wilms' tumor gene in genital development? Proc Natl Acad Sci USA 87:5383–5386

    Article  PubMed  Google Scholar 

  16. Winyard PJ, Risdon RA, Sams VR, Dressler GR, Woolf AS (1996) The PAX2 transcription factor is expressed in cystic and hyperproliferative dysplastic epithelia in human kidney malformations. J Clin Invest 15:451–459

    Article  Google Scholar 

  17. Morrison AA, Viney RL, Saleem MA, Ladomery MR (2008) New insights into the function of the Wilms' tumor suppressor gene WT1 in podocytes. Am J Physiol Ren Physiol 295:F12–F17

    Article  CAS  Google Scholar 

  18. Sanyanusin P, Schimmenti LA, McNoe LA, Ward TA, Pierpont ME, Sullivan MJ, Dobyns WB, Eccles MR (1995) Mutation of the PAX2 gene in a family with optic nerve colobomas, renal anomalies and vesicoureteral reflux. Nat Genet 9:358–364

    Article  CAS  PubMed  Google Scholar 

  19. Online Mendelian Inheritance in Man. John Hopkins University. http://www.ncbi.nlm.nih.gov/sites/entrez

  20. Woolf AS, Price K, Scambler PJ, Winyard PJD (2004) Evolving concepts in human renal dysplasia. J Am Soc Nephrol 15:998–1007

    Article  PubMed  Google Scholar 

  21. Woolf AS, Hillman KA (2007) Unilateral renal agenesis and the congenital solitary functioning kidney: developmental, genetic and clinical perspectives. BJU Int 99:17–21

    Article  CAS  PubMed  Google Scholar 

  22. Slavotinek AM (2008) Novel microdeletion syndromes detected by chromosome microarrays. Hum Genet 124:1–17

    Article  CAS  PubMed  Google Scholar 

  23. UK Genetic Testing Network. http://www.ukgtn.nhs.uk/gtn/Home

  24. Han BK, Babcock DS (1985) Sonographic measurements and appearance of normal kidneys in children. AJR Am J Roentgenol 145:611–616

    CAS  PubMed  Google Scholar 

  25. Adalat S, Woolf AS, Johnstone KA, Wirsing A, Harries LW, Long DA, Hennekam RC, Ledermann SE, Rees L, van’t Hoff W, Marks SD, Trompeter RS, Tullus K, Winyard PJ, Cansick J, Mushtaq I, Dhillon HK, Bingham C, Edghill EL, Shroff R, Stanescu H, Ryffel GU, Ellard S, Bockenhauer D (2009) HNF1B mutations associate with hypomagnesemia and renal magnesium wasting. J Am Soc Nephrol 20:1123–1131

    Article  CAS  PubMed  Google Scholar 

  26. Kolatsi-Joannou M, Bingham C, Ellard S, Bulman MP, Allen LI, Hattersley AT, Woolf AS (2001) Hepatocyte nuclear factor-1b: a new kindred with renal cysts and diabetes and gene expression in normal human development. J Am Soc Nephrol 12:2175–2180

    CAS  PubMed  Google Scholar 

  27. Verdeguer F, Le Corre S, Fischer E, Callens C, Garbay S, Doyen A, Igarashi P, Terzi F, Pontoglio M (2010) A mitotic transcriptional switch in polycystic kidney disease. Nat Med 16:106–110

    Article  CAS  PubMed  Google Scholar 

  28. Bingham C, Bulman MP, Ellard S, Allen LIS, Lipkin GW, van’t Hoff WG, Woolf AS, Rizzoni G, Novelli G, Nicholls AJ, Hattersley AT (2001) Mutations in the hepatocyte nuclear factor-1β gene are associated with familial hypoplastic glomerulocystic kidney disease. Am J Hum Genet 68:219–224

    Article  CAS  PubMed  Google Scholar 

  29. Bingham C, Ellard S, Cole TR, Jones KE, Allen LI, Goodship JA, Goodship TH, Bakalinova-Pugh D, Russell GI, Woolf AS, Nicholls AJ, Hattersley AT (2002) Solitary functioning kidney and diverse genital tract malformations associated with hepatocyte nuclear factor-1b mutations. Kidney Int 61:1243–1251

    Article  CAS  PubMed  Google Scholar 

  30. Ulinski T, Lescure S, Beaufils S, Guigonis V, Decramer S, Morin D, Clauin S, Deschênes G, Bouissou F, Bensman A, Bellanné-Chantelot C (2006) Renal phenotypes related to hepatocyte nuclear factor-1b (TCF2) mutations in a pediatric cohort. J Am Soc Nephrol 17:497–503

    Article  CAS  PubMed  Google Scholar 

  31. Weber S, Moriniere V, Knuppel T, Charbit M, Dusek J, Ghiggeri GM, Jankauskiene A, Mir S, Montini G, Peco-Antic A, Wuhl E, Zurowska AM, Mehls O, Antignac C, Schaefer F, Salomon R (2006) Prevalence of mutations in renal developmental genes in children with renal hypodysplasia: results of the ESCAPE study. J Am Soc Nephrol 17:2864–2870

    Article  CAS  PubMed  Google Scholar 

  32. Heidet L, Decramer S, Pawtowski A, Morinière V, Bandin F, Knebelmann B, Lebre AS, Faguer S, Guigonis V, Antignac C, Salomon R (2010) Spectrum of HNF1B mutations in a large cohort of patients who harbor renal diseases. Clin J Am Soc Nephrol 5:1079–1090

    PubMed  Google Scholar 

  33. Raile K, Klopocki E, Holder M, Wessel T, Galler A, Deiss D, Muller D, Riebel T, Horn D, Maringa M, Weber J, Ullmann R, Gruters A (2009) Expanded clinical spectrum in hepatocyte nuclear factor 1B-maturity-onset diabetes of the young. J Clin Endocrinol Metab 94:2658–2664

    Article  CAS  PubMed  Google Scholar 

  34. Waller SC, Rees L, Woolf AS, Ellard S, Pearson ER, Hattersley AT, Bingham C (2002) Severe hyperglycemia after renal transplantation in a pediatric patient with a mutation of the hepatocyte nuclear factor-1b gene. Am J Kidney Dis 40:1325–1330

    Article  CAS  PubMed  Google Scholar 

  35. Zuber J, Bellanné-Chantelot C, Carette C, Canaud G, Gobrecht S, Gaha K, Mallet V, Martinez F, Thervet E, Timsit J, Legendre C, Dubois-Laforgue D (2009) HNF1B-related diabetes triggered by renal transplantation. Nat Rev Nephrol 5:480–484

    Article  CAS  PubMed  Google Scholar 

  36. Bellanné-Chantelot C, Chauveau D, Gautier JF, Dubois-Laforgue D, Clauin S, Beaufils S, Wilhelm JM, Boitard C, Noël LH, Velho G, Timsit J (2004) Clinical spectrum associated with hepatocyte nuclear factor-1b mutations. Ann Intern Med 140:510–517

    PubMed  Google Scholar 

  37. Soler NG, Walsh CH, Malins JM (1976) Congenital malformations in infants of diabetic mothers. Q J Med 45:303–313

    CAS  PubMed  Google Scholar 

  38. Tran S, Chen YW, Chenier I, Chan JS, Quaggin S, Hébert MJ, Ingelfinger JR, Zhang SL (2008) Maternal diabetes modulates renal morphogenesis in offspring. J Am Soc Nephrol 19:943–952

    Article  CAS  PubMed  Google Scholar 

  39. Bingham C, Ellard S, van’t Hoff WG, Simmonds HA, Marinaki AM, Badman MK, Winocour PH, Stride A, Lockwood CR, Nicholls AJ, Owen KR, Spyer G, Pearson ER, Hattersley AT (2003) Atypical familial juvenile hyperuricemic nephropathy associated with a hepatocyte nuclear factor-1b gene mutation. Kidney Int 63:1645–1651

    Article  CAS  PubMed  Google Scholar 

  40. Lindner TH, Njolstad PR, Horikawa Y, Bostad L, Bell GI, Sovik O (1999) A novel syndrome of diabetes mellitus, renal dysfunction and genital malformation associated with a partial deletion of the pseudo-POU domain of hepatocyte nuclear factor-1β. Hum Mol Genet 8:2001–2008

    Article  CAS  PubMed  Google Scholar 

  41. Sun Z, Hopkins N (2001) vhnf1, the MODY5 and familial GCKD-associated gene, regulates regional specification of the zebrafish gut, pronephros, and hindbrain. Genes Dev 15:3217–3229

    Article  CAS  PubMed  Google Scholar 

  42. Lebrun G, Vasiliu V, Bellanné-Chantelot C, Bensman A, Ulinski T, Chrétien Y, Grünfeld JP (2005) Cystic kidney disease, chromophobe renal cell carcinoma and TCF2 (HNF1b) mutations. Nat Clin Pract Nephrol 1:115–119

    Article  CAS  PubMed  Google Scholar 

  43. Dressler GR, Deutsch U, Chowdhury K, Nornes HO, Gruss P (1990) Pax2, a new murine paired-box-containing gene and its expression in the developing excretory system. Development 109:787–795

    CAS  PubMed  Google Scholar 

  44. Dziarmaga A, Eccles M, Goodyer P (2006) Suppression of ureteric bud apoptosis rescues nephron endowment and adult renal function in Pax2 mutant mice. J Am Soc Nephrol 17:1568–1575

    Article  CAS  PubMed  Google Scholar 

  45. Dureau P, Ttie-Bitach T, Salomon R, Bettembourg O, Amiel J, Uteza Y, Dufier JL (2001) Renal coloboma syndrome. Ophthalmology 108:1912–1916

    Article  CAS  PubMed  Google Scholar 

  46. Amiel J, Audollent S, Joly D, Dureau P, Salomon R, Tellier A-L, Auge J, Bouissou F, Antignac C, Gubler M-C, Eccles MR, Munnich A, Vekemans M, Lyonnet S, Attie-Bitach T (2000) PAX2 mutations in renal-coloboma syndrome: mutational hotspot and germline mosaicism. Eur J Hum Genet 8:820–826

    Article  CAS  PubMed  Google Scholar 

  47. Nishimoto K, Iijima K, Shirakawa T, Kitagawa K, Satomura K, Nakamura H, Yoshikawa N (2001) PAX2 gene mutation in a family with isolated renal hypoplasia. J Am Soc Nephrol 12:1769–1772

    CAS  PubMed  Google Scholar 

  48. Fletcher J, Hu M, Berman Y, Collins F, Grigg J, McIver M, Jüppner H, Alexander SI (2005) Multicystic dysplastic kidney and variable phenotype in a family with a novel deletion mutation of PAX2. J Am Soc Nephrol 16:2754–2761

    Article  CAS  PubMed  Google Scholar 

  49. Cheong HI, Cho HY, Kim JH, Yu YS, Ha IS, Choi YA (2007) Clinico-genetic study of renal coloboma syndrome in children. Pediatr Nephrol 22:1283–1289

    Article  PubMed  Google Scholar 

  50. Quinlan J, Lemire M, Hudson T, Qu H, Benjamin A, Roy A, Pascuet E, Goodyer M, Raju C, Zhang Z, Houghton F, Goodyer P (2007) A common variant of the PAX2 gene is associated with reduced newborn kidney size. J Am Soc Nephrol 18:1915–1921

    Article  CAS  PubMed  Google Scholar 

  51. Keller G, Zimmer G, Mall G, Ritz E, Amann K (2003) Nephron number in patients with primary hypertension. N Engl J Med 348:101–108

    Article  PubMed  Google Scholar 

  52. Martinovic-Bouriel J, Benachi A, Bonnière M, Brahimi N, Esculpavit C, Morichon N, Vekemans M, Antignac C, Salomon R, Encha-Razavi F, Attié-Bitach T, Gubler MC (2010) PAX2 mutations in fetal renal hypodysplasia. Am J Med Genet A 152A:830–835

    Article  CAS  PubMed  Google Scholar 

  53. Choi KL, McNoe LA, French MC, Guilford PJ, Eccles MR (1998) Absence of PAX2 gene mutations in patients with primary familial vesicoureteric reflux. J Med Genet 35:338–339

    Article  CAS  PubMed  Google Scholar 

  54. Cordell HJ, Darlay R, Charoen P, Stewart A, Gullett AM, Lambert HJ, The UK VUR Study Group, Malcolm S, Feather SA, Goodship THJ, Woolf AS, Kenda RB, Goodship JA (2010) Whole-genome linkage and association scan in primary, non-syndromic vesicoureteric reflux. J Am Soc Nephrol 21:113–123

    Article  CAS  PubMed  Google Scholar 

  55. Slavotinek AM, Tifft CJ (2002) Fraser syndrome and cryptophthalmos: review of the diagnostic criteria and evidence for phenotypic modules in complex malformation syndromes. J Med Genet 39:623–633

    Article  CAS  PubMed  Google Scholar 

  56. van Haelst MM, Scambler PJ, Fraser Syndrome Collaboration Group, Hennekam RC (2007) Fraser syndrome: a clinical study of 59 cases and evaluation of diagnostic criteria. Am J Med Genet A 143A:3194–3203

    Article  PubMed  Google Scholar 

  57. McGregor L, Makela V, Darling SM, Vrontou S, Chalepakis G, Roberts C, Smart N, Rutland P, Prescott N, Hopkins J, Bentley E, Shaw A, Roberts E, Mueller R, Jadeja S, Philip N, Nelson J, Francannet C, Perez-Aytes A, Megarbane A, Kerr B, Wainwright B, Woolf AS, Winter RM, Scambler PJ (2003) Fraser syndrome and mouse blebbed phenotype caused by mutations in FRAS1/Fras1 encoding a putative extracellular matrix protein. Nat Genet 34:203–208

    Article  CAS  PubMed  Google Scholar 

  58. Jadeja S, Smyth I, Pitera JE, Taylor MS, van Haelst M, Bentley E, McGregor L, Hopkins J, Chalepakis G, Philip N, Perez-Aytes A, Watt FM, Darling SM, Jackson I, Woolf AS, Scambler PJ (2005) Identification of a new gene mutated in Fraser syndrome and mouse myelencephalic blebs. Nat Genet 37:520–525

    Article  CAS  PubMed  Google Scholar 

  59. Pitera JE, Scambler PJ, Woolf AS (2008) Fras1, a basement membrane-associated protein mutated in Fraser syndrome, mediates both the initiation of the mammalian kidney and the integrity of renal glomeruli. Hum Mol Genet 17:3953–3964

    Article  CAS  PubMed  Google Scholar 

  60. Alazami AM, Shaheen R, Alzahrani F, Snape K, Saggar A, Brinkmann B, Bavi P, Al-Gazali LI, Alkuraya FS (2009) FREM1 mutations cause bifid nose, renal agenesis, and anorectal malformations syndrome. Am J Hum Genet 85:414–418

    Article  CAS  PubMed  Google Scholar 

  61. Kochhar A, Fischer SM, Kimberling WJ, Smith RJ (2007) Branchio-oto-renal syndrome. Am J Med Genet A 143A:1671–1678

    Article  CAS  PubMed  Google Scholar 

  62. Duke V, Quinton R, Gordon I, Bouloux PM, Woolf AS (1998) Proteinuria, hypertension and chronic renal failure in X-linked Kallmann’s syndrome, a defined genetic cause of solitary functioning kidney. Nephrol Dial Transplant 13:1998–2003

    Article  CAS  PubMed  Google Scholar 

  63. Kulharya AS, Michaelis RC, Norris KS, Taylor HA, Garcia-Heras J (1998) Constitutional del(19)(q12q13.1) in a three-year-old girl with severe phenotypic abnormalities affecting multiple organ systems. Am J Med Genet 77:391–394

    Article  CAS  PubMed  Google Scholar 

  64. Malan V, Raoul O, Firth HV, Royer G, Turleau C, Bernheim A, Willatt L, Munnich A, Vekemans M, Lyonnet S, Cormier-Daire V, Colleaux L (2009) 19q13.11 deletion syndrome: a novel clinically recognisable genetic condition identified by array comparative genomic hybridisation. J Med Genet 46:635–640

    Article  CAS  PubMed  Google Scholar 

  65. Kerecuk L, Sajoo A, McGregor L, Berg J, Haq MR, Sebire NJ, Bingham C, Edghill EL, Ellard S, Taylor J, Rigden S, Flinter FA, Woolf AS (2007) Autosomal dominant inheritance of non-syndromic renal hypoplasia and dysplasia: dramatic variation in clinical severity in a single kindred. Nephrol Dial Transplant 22:259–263

    Article  PubMed  Google Scholar 

  66. Weber S, Taylor JC, Winyard P, Baker KF, Sullivan-Brown J, Schild R, Knüppel T, Zurowska AM, Caldas-Alfonso A, Litwin M, Emre S, Ghiggeri GM, Bakkaloglu A, Mehls O, Antignac C, Network E, Schaefer F, Burdine RD (2008) SIX2 and BMP4 mutations associate with anomalous kidney development. J Am Soc Nephrol 19:891–903

    Article  CAS  PubMed  Google Scholar 

  67. Skinner MA, Safford SD, Reeves JG, Jackson ME, Freemerman AJ (2008) Renal aplasia in humans is associated with RET mutations. Am J Hum Genet 82:344–351

    Article  CAS  PubMed  Google Scholar 

  68. Lu W, van Eerde AM, Fan X, Quintero-Rivera F, Kulkarni S, Ferguson H, Kim HG, Fan Y, Xi J, Li QG, Sanlaville D, Andrews W, Sundaresan V, Bi W, Yan J, Giltay JC, Wijmenga C, de Jong TP, Feather SA, Woolf AS, Rao Y, Lupski JR, Eccles MR, Quade BJ, Gusella JF, Morton CC, Maas RL (2007) Disruption of ROBO2 is associated with congenital anomalies of kidney and urinary tract and confers risk of vesicoureteric reflux. Am J Hum Genet 80:616–632

    Article  CAS  PubMed  Google Scholar 

  69. Jenkins D, Bitner-Glindzicz M, Malcolm S, Allison J, Hu CC, Winyard PJ, Gullett AM, Thomas DF, Belk RA, Feather SA, Sun TT, Woolf AS (2005) De novo Uroplakin IIIa mutations cause renal adysplasia leading to severe kidney failure. J Am Soc Nephrol 16:2141–2149

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge grant support from both the Manchester and Institute of Child Health/Great Ormond Street Hospital Biomedical Research Centres. We also thank the numerous referring physicians and the families themselves. We acknowledge support from both the Manchester and the Institute of Child Health/Great Ormond Street Biomedical Research Centres, and from the Special Trustees of Great Ormond Street NHS Trust.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian S. Woolf.

Additional information

Answers:

1. B

2. B

3. A

4. B

5. D

6. C

Multiple choice questions

Multiple choice questions

(Answers appear following the reference list)

(one correct answer indicated for each question)

  • Question 1.

  1. A.

    Renal tract malformations (RTMs) account for nearly all children with end-stage renal failure (ESRF).

  2. B.

    RTMs are found in about 40% of children with ESRF.

  3. C.

    There is only one histological type of kidney malformation.

  4. D.

    Lower renal tract anomalies rarely occur in the same individual who has a kidney malformation.

    • Question 2.

  5. A.

    Individuals with HNF1B mutations always have both renal cysts and diabetes mellitus.

  6. B.

    Individuals with HNF1B mutations can present with diabetes mellitus after renal transplantation

  7. C.

    HNF1B mutations never occur de novo.

  8. D.

    HNF1B mutations always lead to renal failure in the first decade of life.

    • Question 3.

  9. A.

    Eye disease associated with PAX2 mutations may be minimal despite the presence of a RTM.

  10. B.

    The most common renal manifestation of PAX2 mutation is vesicoureteric reflux.

  11. C.

    PAX2 mutations are not associated with proteinuria.

  12. D.

    Most children with renal hypoplasia have PAX2 mutations.

    • Question 4.

  13. A.

    Making a genetic diagnosis in a child with a RTM has no relevance to the wider family.

  14. B.

    Genetic diagnosis in children with RTMs ideally requires close liaison between the Nephrology and Clinical Genetics teams.

  15. C.

    The genetic basis for non-syndromic VUR is well-established.

  16. D.

    The mature human kidney arises from a embryonic structure called the mesonephros.

    • Question 5.

  17. A.

    Solitary functioning kidneys never lead to renal impairment.

  18. B.

    The severity of RTM in members of the same family with inherited PAX2 or HNF1B mutations does not vary.

  19. C.

    Renal hypoplasia and renal dysplasia mean the same thing.

  20. D.

    Pediatric Nephrologists should examine children with RTMs for extra-renal manifestations.

    • Question 6.

  21. A.

    In Fraser syndrome, the characteristic RTM is a multicystic dysplastic kidney.

  22. B.

    Fraser syndrome usually does not short life-span.

  23. C.

    Microarray analysis may find genetic lesions in children with RTMs accompanied by syndromal features such as developmental delay, dysmorphology and multi-organ involvement.

  24. D.

    Branchio-oto-renal syndrome is autosomal recessive.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adalat, S., Bockenhauer, D., Ledermann, S.E. et al. Renal malformations associated with mutations of developmental genes: messages from the clinic. Pediatr Nephrol 25, 2247–2255 (2010). https://doi.org/10.1007/s00467-010-1578-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-010-1578-y

Keywords

Navigation