Skip to main content

Advertisement

Log in

Gene regulation by growth hormone

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Since the somatomedin hypothesis of growth hormone (GH) action was first formulated more than 50 years ago, the key roles of both GH and insulin-like growth factor-I (IGF-I) in human growth have been extended to include important effects on tissue maintenance and repair. More recent observations have revealed that this pathway has a negative side, as it has been implicated as a potential contributor to the development of several human cancers and has been linked to diminished lifespan in experimental animals. This brief review focuses on fundamental aspects of gene regulation by GH, as long-term hormonal effects all require changes in gene expression. Topics to be discussed include GH-stimulated signal transduction pathways, mechanisms of gene activation and gene repression by GH, and an analysis of control of IGF-I gene transcription by the GH-stimulated transcription factor, signal transducer and activator of transcription (Stat)5b.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Salmon WD, Daughaday WH (1957) A hormonally controlled serum factor which stimulates sulfate incorporation by cartilage in vitro. J Lab Clin Med 49:825–836

    CAS  PubMed  Google Scholar 

  2. Daughaday WH, Rotwein P (1989) Insulin-like growth factors I and II. Peptide, messenger ribonucleic acid and gene structures, serum, and tissue concentrations. Endocr Rev 10:68–91

    Article  CAS  PubMed  Google Scholar 

  3. Jones JI, Clemmons DR (1995) Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 16:3–34

    CAS  PubMed  Google Scholar 

  4. Le Roith D, Bondy C, Yakar S, Liu JL, Butler A (2001) The somatomedin hypothesis: 2001. Endocr Rev 22:53–74

    Article  PubMed  Google Scholar 

  5. Melmed S (2006) Endocrinology, 5th edn. Elsevier Saunders, Philadelphia, pp 411–428

    Google Scholar 

  6. Frank RN (2004) Diabetic retinopathy. N Engl J Med 350:48–58

    Article  CAS  PubMed  Google Scholar 

  7. Tatar M, Bartke A, Antebi A (2003) The endocrine regulation of aging by insulin-like signals. Science 299:1346–1351

    Article  CAS  PubMed  Google Scholar 

  8. Ibrahim YH, Yee D (2004) Insulin-like growth factor-I and cancer risk. Growth Horm IGF Res 14:261–269

    Article  CAS  PubMed  Google Scholar 

  9. Laban C, Bustin SA, Jenkins PJ (2003) The GH-IGF-I axis and breast cancer. Trends Endocrinol Metab 14:28–34

    Article  CAS  PubMed  Google Scholar 

  10. Pollak M (2008) Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 8:915–928

    Article  CAS  PubMed  Google Scholar 

  11. Mayo KE (1996) A little lesson in growth regulation. Nat Genet 12:8–9

    Article  CAS  PubMed  Google Scholar 

  12. Rosenfeld RG, Rosenbloom AL, Guevara-Aguirre J (1994) Growth hormone (GH) insensitivity due to primary GH receptor deficiency. Endocr Rev 15:369–390

    CAS  PubMed  Google Scholar 

  13. Goddard AD, Covello R, Luoh SM, Clackson T, Attie KM, Gesundheit N, Rundle AC, Wells JA, Carlsson LM (1995) Mutations of the growth hormone receptor in children with idiopathic short stature. The Growth Hormone Insensitivity Study Group. N Engl J Med 333:1093–1098

    Article  CAS  PubMed  Google Scholar 

  14. Abuzzahab MJ, Schneider A, Goddard A, Grigorescu F, Lautier C, Keller E, Kiess W, Klammt J, Kratzsch J, Osgood D, Pfaffle R, Raile K, Seidel B, Smith RJ, Chernausek SD (2003) IGF-I receptor mutations resulting in intrauterine and postnatal growth retardation. N Engl J Med 349:2211–2222

    Article  CAS  PubMed  Google Scholar 

  15. Woods KA, Camacho-Hubner C, Savage MO, Clark AJ (1996) Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor I gene. N Engl J Med 335:1363–1367

    Article  CAS  PubMed  Google Scholar 

  16. Lupu F, Terwilliger JD, Lee K, Segre GV, Efstratiadis A (2001) Roles of growth hormone and insulin-like growth factor 1 in mouse postnatal growth. Dev Biol 229:141–162

    Article  CAS  PubMed  Google Scholar 

  17. Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A (1993) Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 75:59–72

    CAS  PubMed  Google Scholar 

  18. Zhou Y, Xu BC, Maheshwari HG, He L, Reed M, Lozykowski M, Okada S, Cataldo L, Coschigamo K, Wagner TE, Baumann G, Kopchick JJ (1997) A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse). Proc Natl Acad Sci U S A 94:13215–13220

    Article  CAS  PubMed  Google Scholar 

  19. Sims NA, Clement-Lacroix P, Da Ponte F, Bouali Y, Binart N, Moriggl R, Goffin V, Coschigano K, Gaillard-Kelly M, Kopchick J, Baron R, Kelly PA (2000) Bone homeostasis in growth hormone receptor-null mice is restored by IGF-I but independent of Stat5. J Clin Invest 106:1095–1103

    Article  CAS  PubMed  Google Scholar 

  20. Yakar S, Rosen CJ, Beamer WG, Ackert-Bicknell CL, Wu Y, Liu JL, Ooi GT, Setser J, Frystyk J, Boisclair YR, LeRoith D (2002) Circulating levels of IGF-1 directly regulate bone growth and density. J Clin Invest 110:771–781

    CAS  PubMed  Google Scholar 

  21. Miyakoshi N, Kasukawa Y, Linkhart TA, Baylink DJ, Mohan S (2001) Evidence that anabolic effects of PTH on bone require IGF-I in growing mice. Endocrinology 142:4349–4356

    Article  CAS  PubMed  Google Scholar 

  22. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, Hodsman AB, Eriksen EF, Ish-Shalom S, Genant HK, Wang O, Mitlak BH (2001) Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344:1434–1441

    Article  CAS  PubMed  Google Scholar 

  23. Ishizuya T, Yokose S, Hori M, Noda T, Suda T, Yoshiki S, Yamaguchi A (1997) Parathyroid hormone exerts disparate effects on osteoblast differentiation depending on exposure time in rat osteoblastic cells. J Clin Invest 99:2961–2970

    Article  CAS  PubMed  Google Scholar 

  24. McCarthy TL, Centrella M, Canalis E (1989) Parathyroid hormone enhances the transcript and polypeptide levels of insulin-like growth factor I in osteoblast-enriched cultures from fetal rat bone. Endocrinology 124:1247–1253

    Article  CAS  PubMed  Google Scholar 

  25. Zhao G, Monier-Faugere MC, Langub MC, Geng Z, Nakayama T, Pike JW, Chernausek SD, Rosen CJ, Donahue LR, Malluche HH, Fagin JA, Clemens TL (2000) Targeted overexpression of insulin-like growth factor I to osteoblasts of transgenic mice: increased trabecular bone volume without increased osteoblast proliferation. Endocrinology 141:2674–2682

    Article  CAS  PubMed  Google Scholar 

  26. Powell-Braxton L, Hollingshead P, Warburton C, Dowd M, Pitts-Meek S, Dalton D, Gillett N, Stewart TA (1993) IGF-I is required for normal embryonic growth in mice. Genes Dev 7:2609–2617

    Article  CAS  PubMed  Google Scholar 

  27. Sotiropoulos A, Ohanna M, Kedzia C, Menon RK, Kopchick JJ, Kelly PA, Pende M (2006) Growth hormone promotes skeletal muscle cell fusion independent of insulin-like growth factor 1 up-regulation. Proc Natl Acad Sci U S A 103:7315–7320

    Article  CAS  PubMed  Google Scholar 

  28. Fernandez AM, Dupont J, Farrar RP, Lee S, Stannard B, Le Roith D (2002) Muscle-specific inactivation of the IGF-I receptor induces compensatory hyperplasia in skeletal muscle. J Clin Invest 109:347–355

    CAS  PubMed  Google Scholar 

  29. Coleman ME, DeMayo F, Yin KC, Lee HM, Geske R, Montgomery C, Schwartz RJ (1995) Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. J Biol Chem 270:12109–12116

    Article  CAS  PubMed  Google Scholar 

  30. Barton-Davis ER, Shoturma DI, Musaro A, Rosenthal N, Sweeney HL (1998) Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function. Proc Natl Acad Sci U S A 95:15603–15607

    Article  CAS  PubMed  Google Scholar 

  31. Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3:1014–1019

    Article  CAS  PubMed  Google Scholar 

  32. Musaro A, McCullagh K, Paul A, Houghton L, Dobrowolny G, Molinaro M, Barton ER, Sweeney HL, Rosenthal N (2001) Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet 27:195–200

    Article  CAS  PubMed  Google Scholar 

  33. Barton ER, Morris L, Musaro A, Rosenthal N, Sweeney HL (2002) Muscle-specific expression of insulin-like growth factor I counters muscle decline in mdx mice. J Cell Biol 157:137–148

    Article  CAS  PubMed  Google Scholar 

  34. Caroni P, Schneider C (1994) Signaling by insulin-like growth factors in paralyzed skeletal muscle: rapid induction of IGF1 expression in muscle fibers and prevention of interstitial cell proliferation by IGF-BP5 and IGF-BP4. J Neurosci 14:3378–3388

    CAS  PubMed  Google Scholar 

  35. Edwall D, Schalling M, Jennische E, Norstedt G (1989) Induction of insulin-like growth factor I messenger ribonucleic acid during regeneration of rat skeletal muscle. Endocrinology 124:820–825

    Article  CAS  PubMed  Google Scholar 

  36. DeVol DL, Rotwein P, Sadow JL, Novakofski J, Bechtel PJ (1990) Activation of insulin-like growth factor gene expression during work-induced skeletal muscle growth. Am J Physiol 259:E89–95

    CAS  PubMed  Google Scholar 

  37. Carson JA, Nettleton D, Reecy JM (2002) Differential gene expression in the rat soleus muscle during early work overload-induced hypertrophy. FASEB J 16:207–209

    CAS  PubMed  Google Scholar 

  38. Waters MJ, Hoang HN, Fairlie DP, Pelekanos RA, Brown RJ (2006) New insights into growth hormone action. J Mol Endocrinol 36:1–7

    Article  CAS  PubMed  Google Scholar 

  39. Herrington J, Carter-Su C (2001) Signaling pathways activated by the growth hormone receptor. Trends Endocrinol Metab 12:252–257

    Article  CAS  PubMed  Google Scholar 

  40. Lanning NJ, Carter-Su C (2006) Recent advances in growth hormone signaling. Rev Endocr Metab Disord 7:225–235

    Article  CAS  PubMed  Google Scholar 

  41. Rotwein P, Thomas MJ, Harris DM, Gronowski AM, LeStunff C (1997) Nuclear actions of growth hormone: an in vivo perspective. J Anim Sci 75:11–19

    Google Scholar 

  42. Herrington J, Smit LS, Schwartz J, Carter-Su C (2000) The role of STAT proteins in growth hormone signaling. Oncogene 19:2585–2597

    Article  CAS  PubMed  Google Scholar 

  43. Levy DE, Darnell JEJ (2002) Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 3:651–662

    Article  CAS  PubMed  Google Scholar 

  44. Gronowski AM, Rotwein P (1994) Rapid changes in nuclear protein tyrosine phosphorylation after growth hormone treatment in vivo. Identification of phosphorylated mitogen-activated protein kinase and STAT91. J Biol Chem 269:7874–7878

    CAS  PubMed  Google Scholar 

  45. Gronowski AM, Zhong Z, Wen Z, Thomas MJ, Darnell JEJ, Rotwein P (1995) In vivo growth hormone treatment rapidly stimulates the tyrosine phosphorylation and activation of Stat3. Mol Endocrinol 9:171–177

    Article  CAS  PubMed  Google Scholar 

  46. Ram PA, Park SH, Choi HK, Waxman DJ (1996) Growth hormone activation of Stat 1, Stat 3, and Stat 5 in rat liver. Differential kinetics of hormone desensitization and growth hormone stimulation of both tyrosine phosphorylation and serine/threonine phosphorylation. J Biol Chem 271:5929–5940

    Article  CAS  PubMed  Google Scholar 

  47. Campbell GS, Meyer DJ, Raz R, Levy DE, Schwartz J, Carter-Su C (1995) Activation of acute phase response factor (APRF)/Stat3 transcription factor by growth hormone. J Biol Chem 270:3974–3979

    Article  CAS  PubMed  Google Scholar 

  48. Smit LS, Vanderkuur JA, Stimage A, Han Y, Luo G, Yu-Lee LY, Schwartz J, Carter-Su C (1997) Growth hormone-induced tyrosyl phosphorylation and deoxyribonucleic acid binding activity of Stat5A and Stat5B. Endocrinology 138:3426–3434

    Article  CAS  PubMed  Google Scholar 

  49. Smit LS, Meyer DJ, Billestrup N, Norstedt G, Schwartz J, Carter-Su C (1996) The role of the growth hormone (GH) receptor and JAK1 and JAK2 kinases in the activation of Stats 1, 3, and 5 by GH. Mol Endocrinol 10:519–533

    Article  CAS  PubMed  Google Scholar 

  50. Gebert CA, Park SH, Waxman DJ (1997) Regulation of signal transducer and activator of transcription (STAT) 5b activation by the temporal pattern of growth hormone stimulation. Mol Endocrinol 11:400–414

    Article  CAS  PubMed  Google Scholar 

  51. Teglund S, McKay C, Schuetz E, van Deursen JM, Stravopodis D, Wang D, Brown M, Bodner S, Grosveld G, Ihle JN (1998) Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 93:841–850

    Article  CAS  PubMed  Google Scholar 

  52. Udy GB, Towers RP, Snell RG, Wilkins RJ, Park SH, Ram PA, Waxman DJ, Davey HW (1997) Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression. Proc Natl Acad Sci U S A 94:7239–7244

    Article  CAS  PubMed  Google Scholar 

  53. Kofoed EM, Hwa V, Little B, Woods KA, Buckway CK, Tsubaki J, Pratt KL, Bezrodnik L, Jasper H, Tepper A, Heinrich JJ, Rosenfeld RG (2003) Growth hormone insensitivity associated with a STAT5b mutation. N Engl J Med 349:1139–1147

    Article  CAS  PubMed  Google Scholar 

  54. Hwa V, Little B, Adiyaman P, Kofoed EM, Pratt KL, Ocal G, Berberoglu M, Rosenfeld RG (2005) Severe growth hormone insensitivity resulting from total absence of signal transducer and activator of transcription 5b. J Clin Endocrinol Metab 90:4260–4266

    Article  CAS  PubMed  Google Scholar 

  55. Rosenfeld RG, Belgorosky A, Camacho-Hubner C, Savage MO, Wit JM, Hwa V (2007) Defects in growth hormone receptor signaling. Trends Endocrinol Metab 18:134–141

    Article  CAS  PubMed  Google Scholar 

  56. Thompson BJ, Shang CA, Waters MJ (2000) Identification of genes induced by growth hormone in rat liver using cDNA arrays. Endocrinology 141:4321–4324

    Article  CAS  PubMed  Google Scholar 

  57. Flores-Morales A, Stahlberg N, Tollet-Egnell P, Lundeberg J, Malek RL, Quackenbush J, Lee NH, Norstedt G (2001) Microarray analysis of the in vivo effects of hypophysectomy and growth hormone treatment on gene expression in the rat. Endocrinology 142:3163–3176

    Article  CAS  PubMed  Google Scholar 

  58. Rowland JE, Lichanska AM, Kerr LM, White M, d'Aniello EM, Maher SL, Brown R, Teasdale RD, Noakes PG, Waters MJ (2005) In vivo analysis of growth hormone receptor signaling domains and their associated transcripts. Mol Cell Biol 25:66–77

    Article  CAS  PubMed  Google Scholar 

  59. Huo JS, McEachin RC, Cui TX, Duggal NK, Hai T, States DJ, Schwartz J (2006) Profiles of growth hormone (GH)-regulated genes reveal time-dependent responses and identify a mechanism for regulation of activating transcription factor 3 by GH. J Biol Chem 281:4132–4141

    Article  CAS  PubMed  Google Scholar 

  60. Vidal OM, Merino R, Rico-Bautista E, Fernandez-Perez L, Chia DJ, Woelfle J, Ono M, Lenhard B, Norstedt G, Rotwein P, Flores-Morales A (2007) In vivo transcript profiling and phylogenetic analysis identifies suppressor of cytokine signaling 2 as a direct signal transducer and activator of transcription 5b target in liver. Mol Endocrinol 21:293–311

    Article  CAS  PubMed  Google Scholar 

  61. Clodfelter KH, Holloway MG, Hodor P, Park SH, Ray WJ, Waxman DJ (2006) Sex-dependent liver gene expression is extensive and largely dependent upon signal transducer and activator of transcription 5b (STAT5b): STAT5b-dependent activation of male genes and repression of female genes revealed by microarray analysis. Mol Endocrinol 20:1333–1351

    Article  CAS  PubMed  Google Scholar 

  62. Jorgensen JO, Jessen N, Pedersen SB, Vestergaard E, Gormsen L, Lund SA, Billestrup N (2006) GH receptor signaling in skeletal muscle and adipose tissue in human subjects following exposure to an intravenous GH bolus. Am J Physiol Endocrinol Metab 291:E899–905

    Article  PubMed  Google Scholar 

  63. Nielsen C, Gormsen LC, Jessen N, Pedersen SB, Moller N, Lund S, Jorgensen JO (2008) Growth hormone signaling in vivo in human muscle and adipose tissue: impact of insulin, substrate background, and growth hormone receptor blockade. J Clin Endocrinol Metab 93:2842–2850

    Article  CAS  PubMed  Google Scholar 

  64. Waxman DJ, O'Connor C (2006) Growth hormone regulation of sex-dependent liver gene expression. Mol Endocrinol 20:2613–2629

    Article  CAS  PubMed  Google Scholar 

  65. Wauthier V, Waxman DJ (2008) Sex-specific early growth hormone response genes in rat liver. Mol Endocrinol 22:1962–1974

    Article  CAS  PubMed  Google Scholar 

  66. Ahluwalia A, Clodfelter KH, Waxman DJ (2004) Sexual dimorphism of rat liver gene expression: regulatory role of growth hormone revealed by deoxyribonucleic Acid microarray analysis. Mol Endocrinol 18:747–760

    Article  CAS  PubMed  Google Scholar 

  67. Zhou YC, Waxman DJ (1999) Cross-talk between janus kinase-signal transducer and activator of transcription (JAK-STAT) and peroxisome proliferator-activated receptor-alpha (PPARalpha) signaling pathways. Growth hormone inhibition of pparalpha transcriptional activity mediated by stat5b. J Biol Chem 274:2672–2681

    Article  CAS  PubMed  Google Scholar 

  68. Zhou YC, Waxman DJ (1999) STAT5b down-regulates peroxisome proliferator-activated receptor alpha transcription by inhibition of ligand-independent activation function region-1 trans-activation domain. J Biol Chem 274:29874–29882

    Article  CAS  PubMed  Google Scholar 

  69. Ono M, Chia DJ, Merino-Martinez R, Flores-Morales A, Unterman TG, Rotwein P (2007) Signal transducer and activator of transcription (Stat) 5b-mediated inhibition of insulin-like growth factor binding protein-1 gene transcription: a mechanism for repression of gene expression by growth hormone. Mol Endocrinol 21:1443–1457

    Article  CAS  PubMed  Google Scholar 

  70. Murphy LJ (1998) Insulin-like growth factor-binding proteins: functional diversity or redundancy? J Mol Endocrinol 21:97–107

    Article  CAS  PubMed  Google Scholar 

  71. Barthel A, Schmoll D, Unterman TG (2005) FoxO proteins in insulin action and metabolism. Trends Endocrinol Metab 16:183–189

    Article  CAS  PubMed  Google Scholar 

  72. Accili D, Arden KC (2004) FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117:421–426

    Article  CAS  PubMed  Google Scholar 

  73. Rotwein P (1999) Molecular biology of IGF-I and IGF-II. Contemporary endocrinology: the IGF system. Humana Press, Totowa, pp 19–35

    Google Scholar 

  74. Hall LJ, Kajimoto Y, Bichell D, Kim SW, James PL, Counts D, Nixon LJ, Tobin G, Rotwein P (1992) Functional analysis of the rat insulin-like growth factor I gene and identification of an IGF-I gene promoter. DNA Cell Biol 11:301–313

    Article  CAS  PubMed  Google Scholar 

  75. Adamo ML, Ben-Hur H, Roberts CTJ, LeRoith D (1991) Regulation of start site usage in the leader exons of the rat insulin-like growth factor-I gene by development, fasting, and diabetes. Mol Endocrinol 5:1677–1686

    Article  CAS  PubMed  Google Scholar 

  76. Shimatsu A, Rotwein P (1987) Mosaic evolution of the insulin-like growth factors. Organization, sequence, and expression of the rat insulin-like growth factor I gene. J Biol Chem 262:7894–7900

    CAS  PubMed  Google Scholar 

  77. Kim SW, Lajara R, Rotwein P (1991) Structure and function of a human insulin-like growth factor-I gene promoter. Mol Endocrinol 5:1964–1972

    Article  CAS  PubMed  Google Scholar 

  78. Kavsan VM, Koval AP, Grebenjuk VA, Chan SJ, Steiner DF, Roberts CTJ, LeRoith D (1993) Structure of the chum salmon insulin-like growth factor I gene. DNA Cell Biol 12:729–737

    Article  CAS  PubMed  Google Scholar 

  79. Hoyt EC, Van Wyk JJ, Lund PK (1988) Tissue and development specific regulation of a complex family of rat insulin-like growth factor I messenger ribonucleic acids. Mol Endocrinol 2:1077–1086

    Article  CAS  PubMed  Google Scholar 

  80. Woelfle J, Billiard J, Rotwein P (2003) Acute control of insulin-like growth factor-1 gene transcription by growth hormone through STAT5B. J Biol Chem 278:22696–22702

    Article  CAS  PubMed  Google Scholar 

  81. Woelfle J, Chia DJ, Rotwein P (2003) Mechanisms of growth hormone (GH) action. Identification of conserved Stat5 binding sites that mediate GH-induced insulin-like growth factor-I gene activation. J Biol Chem 278:51261–51266

    Article  CAS  PubMed  Google Scholar 

  82. Bichell DP, Kikuchi K, Rotwein P (1992) Growth hormone rapidly activates insulin-like growth factor I gene transcription in vivo. Mol Endocrinol 6:1899–1908

    Article  CAS  PubMed  Google Scholar 

  83. Thomas MJ, Kikuchi K, Bichell DP, Rotwein P (1995) Characterization of deoxyribonucleic acid-protein interactions at a growth hormone-inducible nuclease hypersensitive site in the rat insulin-like growth factor-I gene. Endocrinology 136:562–569

    Article  CAS  PubMed  Google Scholar 

  84. An MR, Lowe WLJ (1995) The major promoter of the rat insulin-like growth factor-I gene binds a protein complex that is required for basal expression. Mol Cell Endocrinol 114:77–89

    Article  CAS  PubMed  Google Scholar 

  85. Mittanck DW, Kim SW, Rotwein P (1997) Essential promoter elements are located within the 5' untranslated region of human insulin-like growth factor-I exon I. Mol Cell Endocrinol 126:153–163

    Article  CAS  PubMed  Google Scholar 

  86. Wang L, Wang X, Adamo ML (2000) Two putative GATA motifs in the proximal exon 1 promoter of the rat insulin-like growth factor I gene regulate basal promoter activity. Endocrinology 141:1118–1126

    Article  CAS  PubMed  Google Scholar 

  87. Wang X, Talamantez JL, Adamo ML (1998) A CACCC box in the proximal exon 2 promoter of the rat insulin-like growth factor I gene is required for basal promoter activity. Endocrinology 139:1054–1066

    Article  CAS  PubMed  Google Scholar 

  88. Wang Y, Jiang H (2005) Identification of a distal STAT5-binding DNA region that may mediate growth hormone regulation of insulin-like growth factor-I gene expression. J Biol Chem 280:10955–10963

    Article  CAS  PubMed  Google Scholar 

  89. Chia DJ, Ono M, Woelfle J, Schlesinger-Massart M, Jiang H, Rotwein P (2006) Characterization of distinct Stat5b binding sites that mediate growth hormone-stimulated IGF-I gene transcription. J Biol Chem 281:3190–3197

    Article  CAS  PubMed  Google Scholar 

  90. Eleswarapu S, Gu Z, Jiang H (2008) Growth hormone regulation of insulin-like growth factor-I gene expression may be mediated by multiple distal signal transducer and activator of transcription 5 binding sites. Endocrinology 149:2230–2240

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research cited from our laboratory was supported by grants from the US National Institutes of Health (R01 DK069703 to PR, and K08 DK077897 to DJC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Rotwein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rotwein, P., Chia, D.J. Gene regulation by growth hormone. Pediatr Nephrol 25, 651–658 (2010). https://doi.org/10.1007/s00467-009-1258-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-009-1258-y

Keywords

Navigation