Skip to main content
Log in

Stimulatory and inhibitory signaling molecules that regulate renal branching morphogenesis

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Branching morphogenesis, defined as the growth and branching of epithelial tubules, is a fundamental developmental process involved in the formation of a variety of mammalian tissues, including the kidney. Defective renal branching may result in a number of clinically relevant abnormalities, including renal agenesis, renal dysplasia, multiplex kidneys, and hypertension. In this review we describe the morphological events that generate the characteristic tree-like structure of the mammalian collecting system. We also highlight new knowledge related to both established and novel signaling systems that are important for stimulating and inhibiting branching morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Piscione TD, Rosenblum ND (2002) The molecular control of renal branching morphogenesis: current knowledge and emerging insights. Differentiation 70:227–246

    CAS  PubMed  Google Scholar 

  2. Costantini F (2006) Renal branching morphogenesis: concepts, questions, and recent advances. Differentiation 74:402–421

    CAS  PubMed  Google Scholar 

  3. Shah MM, Sampogna RV, Sakurai H, Bush KT, Nigam SK (2004) Branching morphogenesis and kidney disease. Development 131:1449–1462

    CAS  PubMed  Google Scholar 

  4. Osathanondh V, Potter E (1963) Development of the human kidney as shown by microdissection III. Formation and interrelationships of collecting tubules and nephrons. Arch Pathol 76:290–302

    CAS  PubMed  Google Scholar 

  5. Watanabe T, Costantini F (2004) Real-time analysis of ureteric bud branching morphogenesis in vitro. Dev Biol 271:98–108

    CAS  PubMed  Google Scholar 

  6. Pachnis V, Mankoo B, Costantini F (1993) Expression of the c-ret proto-oncogene during mouse embryogenesis. Development 119:1005–1017

    CAS  PubMed  Google Scholar 

  7. Majumdar A, Vainio S, Kispert A, McMahon J, McMahon AP (2003) Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development. Development 130:3175–3185

    CAS  PubMed  Google Scholar 

  8. Schmidt-Ott KM, Yang J, Chen X, Wang H, Paragas N, Mori K, Li JY, Lu B, Costantini F, Schiffer M, Bottinger E, Barasch J (2005) Novel regulators of kidney development from the tips of the ureteric bud. J Am Soc Nephrol 16:1993–2002

    CAS  PubMed  Google Scholar 

  9. Li Z, Stuart RO, Qiao J, Pavlova A, Bush KT, Pohl M, Sakurai H, Nigam SK (2000) A role for timeless in epithelial morphogenesis during kidney development. Proc Natl Acad Sci USA 97:10038–10043

    CAS  PubMed  Google Scholar 

  10. Michael L, Sweeney DE, Davies JA (2007) The lectin Dolichos biflorus agglutinin is a sensitive indicator of branching morphogenetic activity in the developing mouse metanephric collecting duct system. J Anat 210:89–97

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Michael L, Davies JA (2004) Pattern and regulation of cell proliferation during murine ureteric bud development. J Anat 204:241–255

    PubMed  PubMed Central  Google Scholar 

  12. Hellmich HL, Kos L, Cho ES, Mahon KA, Zimmer A (1996) Embryonic expression of glial cell-line derived neurotrophic factor (GDNF) suggests multiple developmental roles in neural differentiation and epithelial-mesenchymal interactions. Mech Dev 54:95–105

    CAS  PubMed  Google Scholar 

  13. Pichel JG, Shen L, Sheng HZ, Granholm AC, Drago J, Grinberg A, Lee EJ, Huang SP, Saarma M, Hoffer BJ, Sariola H, Westphal H (1996) GDNF is required for kidney development and enteric innervation. Cold Spring Harbor Symp Quant Biol 61:445–457

    CAS  PubMed  Google Scholar 

  14. Sainio K, Suvanto P, Davies J, Wartiovaara J, Wartiovaara K, Saarma M, Arumae U, Meng X, Lindahl M, Pachnis V, Sariola H (1997) Glial-cell-line-derived neurotrophic factor is required for bud initiation from ureteric epithelium. Development 124:4077–4087

    CAS  PubMed  Google Scholar 

  15. Schuchardt A, D'Agati V, Larsson-Blomberg L, Costantini F, Pachnis V (1994) Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367:380–383

    CAS  PubMed  Google Scholar 

  16. Schuchardt A, D'Agati V, Pachnis V, Costantini F (1996) Renal agenesis and hypodysplasia in ret-k- mutant mice result from defects in ureteric bud development. Development 122:1919–1929

    CAS  PubMed  Google Scholar 

  17. Enomoto H, Araki T, Jackman A, Heuckeroth RO, Snider WD, Johnson EM Jr, Milbrandt J (1998) GFR alpha1-deficient mice have deficits in the enteric nervous system and kidneys. Neuron 21:317–324

    CAS  PubMed  Google Scholar 

  18. Jain S, Encinas M, Johnson EM Jr, Milbrandt J (2006) Critical and distinct roles for key RET tyrosine docking sites in renal development. Genes Dev 20:321–333

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Fisher CE, Michael L, Barnett MW, Davies JA (2001) Erk MAP kinase regulates branching morphogenesis in the developing mouse kidney. Development 128:4329–4338

    CAS  PubMed  Google Scholar 

  20. Tang MJ, Cai Y, Tsai SJ, Wang YK, Dressler GR (2002) Ureteric bud outgrowth in response to RET activation is mediated by phosphatidylinositol 3-kinase. Dev Biol 243:128–136

    CAS  PubMed  Google Scholar 

  21. Mendelsohn C, Batourina E, Fung S, Gilbert T, Dodd J (1999) Stromal cells mediate retinoid-dependent functions essential for renal development. Development 126:1139–1148

    CAS  PubMed  Google Scholar 

  22. Quinlan J, Kaplan F, Sweezey N, Goodyer P (2007) LGL1, a novel branching morphogen in developing kidney, is induced by retinoic acid. Am J Physiol Renal Physiol 293:F987–993

    CAS  PubMed  Google Scholar 

  23. Basson MA, Akbulut S, Watson-Johnson J, Simon R, Carroll TJ, Shakya R, Gross I, Martin GR, Lufkin T, McMahon AP, Wilson PD, Costantini FD, Mason IJ, Licht JD (2005) Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev Cell 8:229–239

    CAS  PubMed  Google Scholar 

  24. Kim D, Dressler GR (2007) PTEN modulates GDNF/RET mediated chemotaxis and branching morphogenesis in the developing kidney. Dev Biol 307:290–299

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Grieshammer U, Le M, Plump AS, Wang F, Tessier-Lavigne M, Martin GR (2004) SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev Cell 6:709–717

    CAS  PubMed  Google Scholar 

  26. Brophy PD, Ostrom L, Lang KM, Dressler GR (2001) Regulation of ureteric bud outgrowth by Pax2-dependent activation of the glial derived neurotrophic factor gene. Development 128:4747–4756

    CAS  PubMed  Google Scholar 

  27. Xu PX, Adams J, Peters H, Brown MC, Heaney S, Maas R (1999) Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nat Genet 23:113–117

    CAS  PubMed  Google Scholar 

  28. Gong KQ, Yallowitz AR, Sun H, Dressler GR, Wellik DM (2007) A Hox-Eya-Pax complex regulates early kidney developmental gene expression. Mol Cell Biol 27:7661–7668

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kume T, Deng K, Hogan BL (2000) Murine forkhead/winged helix genes Foxc1 (Mf1) and Foxc2 (Mfh1) are required for the early organogenesis of the kidney and urinary tract. Development 127:1387–1395

    CAS  PubMed  Google Scholar 

  30. Dudley AT, Robertson EJ (1997) Overlapping expression domains of bone morphogenetic protein family members potentially account for limited tissue defects in BMP7 deficient embryos. Dev Dyn 208:349–362

    CAS  PubMed  Google Scholar 

  31. Miyazaki Y, Oshima K, Fogo A, Hogan BL, Ichikawa I (2000) Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J Clin Invest 105:863–873

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Michos O, Panman L, Vintersten K, Beier K, Zeller R, Zuniga A (2004) Gremlin-mediated BMP antagonism induces the epithelial-mesenchymal feedback signaling controlling metanephric kidney and limb organogenesis. Development 131:3401–3410

    CAS  PubMed  Google Scholar 

  33. Bridgewater D, Cox B, Cain J, Lau A, Athaide V, Gill PS, Kuure S, Sainio K, Rosenblum ND (2008) Canonical WNT/beta-catenin signaling is required for ureteric branching. Dev Biol 317:83–94

    CAS  PubMed  Google Scholar 

  34. Iglesias DM, Hueber PA, Chu L, Campbell R, Patenaude AM, Dziarmaga AJ, Quinlan J, Mohamed O, Dufort D, Goodyer PR (2007) Canonical WNT signaling during kidney development. Am J Physiol Renal Physiol 293:F494–500

    CAS  PubMed  Google Scholar 

  35. Schwab KR, Patterson LT, Hartman HA, Song N, Lang RA, Lin X, Potter SS (2007) Pygo1 and Pygo2 roles in Wnt signaling in mammalian kidney development. BMC Biol 5:15

    PubMed  PubMed Central  Google Scholar 

  36. Hasegawa Y, Satoh K, Iizuka-Kogo A, Shimomura A, Nomura R, Akiyama T, Senda T (2007) Loss of ICAT gene function leads to arrest of ureteric bud branching and renal agenesis. Biochem Biophys Res Commun 362:988–994

    CAS  PubMed  Google Scholar 

  37. Marose TD, Merkel CE, McMahon AP, Carroll TJ (2008) Beta-catenin is necessary to keep cells of ureteric bud/Wolffian duct epithelium in a precursor state. Dev Biol 314:112–126

    CAS  PubMed  Google Scholar 

  38. Miyamoto N, Yoshida M, Kuratani S, Matsuo I, Aizawa S (1997) Defects of urogenital development in mice lacking Emx2. Development 124:1653–1664

    CAS  PubMed  Google Scholar 

  39. Stark K, Vainio S, Vassileva G, McMahon AP (1994) Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 372:679–683

    CAS  PubMed  Google Scholar 

  40. Kispert A, Vainio S, Shen L, Rowitch DH, McMahon AP (1996) Proteoglycans are required for maintenance of Wnt-11 expression in the ureter tips. Development 122:3627–3637

    CAS  PubMed  Google Scholar 

  41. Lin Y, Liu A, Zhang S, Ruusunen T, Kreidberg JA, Peltoketo H, Drummond I, Vainio S (2001) Induction of ureter branching as a response to Wnt-2b signaling during early kidney organogenesis. Dev Dyn 222:26–39

    CAS  PubMed  Google Scholar 

  42. Massague J (1998) TGF-beta signal transduction. Annu Rev Biochem 67:753–791

    CAS  PubMed  Google Scholar 

  43. Dudley AT, Lyons KM, Robertson EJ (1995) A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev 9:2795–2807

    CAS  PubMed  Google Scholar 

  44. Pelton RW, Saxena B, Jones M, Moses HL, Gold LI (1991) Immunohistochemical localization of TGF beta 1, TGF beta 2, and TGF beta 3 in the mouse embryo: expression patterns suggest multiple roles during embryonic development. J Cell Biol 115:1091–1105

    CAS  PubMed  Google Scholar 

  45. Sanford LP, Ormsby I, Gittenberger-de Groot AC, Sariola H, Friedman R, Boivin GP, Cardell EL, Doetschman T (1997) TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development 124:2659–2670

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sims-Lucas S, Caruana G, Dowling J, Kett MM, Bertram JF (2008) Augmented and accelerated nephrogenesis in TGF-beta2 heterozygous mutant mice. Pediatr Res 63:607–612

    CAS  PubMed  Google Scholar 

  47. Hartwig S, Bridgewater D, Di Giovanni V, Cain J, Mishina Y, Rosenblum ND (2008) BMP receptor ALK3 controls collecting system development. J Am Soc Nephrol 19:117–124

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Brenner BM, Garcia DL, Anderson S (1988) Glomeruli and blood pressure. Less of one, more the other? Am J Hypertens 1:335–347

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman D. Rosenblum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bridgewater, D., Rosenblum, N.D. Stimulatory and inhibitory signaling molecules that regulate renal branching morphogenesis. Pediatr Nephrol 24, 1611–1619 (2009). https://doi.org/10.1007/s00467-008-1048-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-008-1048-y

Keywords

Navigation