Skip to main content
Log in

Hypoxia/re-oxygenation injury induces apoptosis of LLC-PK1 cells by activation of caspase-2

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Hypoxia/re-oxygenation injury induces apoptosis in renal tubule cells, but its underlying molecular pathways are not fully elucidated. Activation of caspase-2 has recently been proposed as a novel mechanism of apoptosis in fibroblasts. In this study we examined whether hypoxia/re-oxygenation injury induces apoptosis in proximal tubule cells by activation of caspase-2. Porcine proximal tubule (LLC-PK1) cells were subjected to hypoxia/re-oxygenation injury in the presence or absence of caspase inhibitors. Apoptosis was detected by DNA laddering, flow cytometry, and immunocytochemistry for Bax and cytochrome c. The activity of caspases-2, 8 and 9 was measured. Apoptosis was evident after hypoxia/re-oxygenation and was best prevented by pretreatment with caspase-2 inhibitor. Hypoxia/re-oxygenation resulted in a dramatic increase in caspase-2 activity (32-fold, in comparison with a 16-fold increase in caspase-8 activity and a tenfold increase in caspase-9 activity). Immunocytochemistry revealed Bax activation and translocation to mitochondria and cytochrome c release into the cytosol following hypoxia/re-oxygenation, both of which were significantly suppressed by pretreatment with caspase-2 inhibitor. These results indicate that hypoxia/re-oxygenation injury in cultured proximal tubule cells induced apoptosis by activation of caspase-2, which is required for the mitochondrial translocation of Bax.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schumer M, Colombel MC, Sawczuk IS, Gobe G, Connor J, O’Toole KM, Olsson CA, Wise GJ, Buttyan R (1992) Morphologic, biochemical, and molecular evidence of apoptosis during the reperfusion phase after brief periods of renal ischemia. Am J Pathol 140:831–838

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Nogae S, Miyazaki M, Kobayashi N, Saito T, Abe K, Saito H, Nakane PK, Nakanishi Y, Koji T (1998) Induction of apoptosis in ischemia–reperfusion model of mouse kidney: possible involvement of Fas. J Am Soc Nephrol 9:620–631

    CAS  PubMed  Google Scholar 

  3. Feldenberg LR, Thevananther S, del Rio M, de Leon M, Devarajan P (1999) Partial ATP depletion induces Fas- and caspase-mediated apoptosis in MDCK cells. Am J Physiol 276:F837–F846

    CAS  PubMed  Google Scholar 

  4. Saikumar P, Dong Z, Patel Y, Hall K, Hopfer U, Weinberg JM, Venkatachalam MA (1998) Role of hypoxia-induced Bax translocation and cytochrome c release in reoxygenation injury. Oncogene 17:3401–3415

    Article  CAS  Google Scholar 

  5. Dong Z, Saikumar P, Patel Y, Weinberg JM, Venkatachalam MA (2000) Serine protease inhibitors suppress cytochrome c-mediated caspase-9 activation and apoptosis during hypoxia-reoxygenation. Biochem J 347:669–677

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lassus P, Opitz-Araya X, Lazebnik Y (2002) Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 297:1352–1354

    Article  CAS  Google Scholar 

  7. Guo Y, Srinivasula SM, Druilhe A, Fernandes-Alnemri T, Alnemri ES (2002) Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. J Biol Chem 277:13430–13437

    Article  CAS  Google Scholar 

  8. Robertson JD, Enoksson M, Suomela M, Zhivotovsky B, Orrenius S (2002) Caspase-2 acts upstream of mitochondria to promote cytochrome c release during etoposide-induced apoptosis. J Biol Chem 277:29803–29809

    Article  CAS  Google Scholar 

  9. Paroni G, Henderson C, Schneider C, Brancolini C (2002) Caspase-2 can trigger cytochrome c release and apoptosis from the nucleus. J Biol Chem 277:15147–15161

    Article  CAS  Google Scholar 

  10. O’Reilly LA, Ekert P, Harvey N, Marsden V, Cullen L, Vaux DL, Hacker G, Magnusson C, Pakusch M, Cecconi F, Kuida K, Strasser A, Huang DC, Kumar S (2002) Caspase-2 is not required for thymocyte or neuronal apoptosis even though cleavage of caspase-2 is dependent on both Apaf-1 and caspase-9. Cell Death Differ 9:832–841

    Article  Google Scholar 

  11. Bergeron L, Perez GI, Macdonald G, Shi L, Sun Y, Jurisicova A, Varmuza S, Latham KE, Flaws JA, Salter JC, Hara H, Moskowitz MA, Li E, Greenberg A, Tilly JL, Yuan J (1998) Defects in regulation of apoptosis in caspase-2-deficient mice. Genes Dev 12:1304–1314

    Article  CAS  Google Scholar 

  12. Weinberg JM, Roeser NF, Davis JA, Venkatachalam MA (1997) Glycine-protected, hypoxic, proximal tubules develop severely compromised energetic function. Kidney Int 52:140–151

    Article  CAS  Google Scholar 

  13. Garza-Quintero R, Weinberg JM, Ortega-Lopez J, Davis JA, Venkatachalam MA (1993) Conservation of structure in ATP-depleted proximal tubules: role of calcium, polyphosphoinositides, and glycine. Am J Physiol 265:F605–F623

    CAS  PubMed  Google Scholar 

  14. Park MS, De Leon M, Devarajan P (2002) Cisplatin induces apoptosis in LLC-PK1 cells via activation of mitochondrial pathways. J Am Soc Nephrol 13:858–865

    Article  CAS  Google Scholar 

  15. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316

    Article  CAS  Google Scholar 

  16. Kumar S, Kinoshita M, Noda M, Copeland NG, Jenkins NA (1994) Induction of apoptosis by the mouse Nedd2 gene, which encodes a protein similar to the product of the Caenorhabditis elegans cell death gene ced-3 and the mammalian IL-1 beta-converting enzyme. Genes Dev 8:1613–1626

    Article  CAS  Google Scholar 

  17. Wang L, Miura M, Bergeron L, Zhu H, Yuan J (1994) Ich-1, an Ice/ced-3-related gene, encodes both positive and negative regulators of programmed cell death. Cell 78:739–750

    Article  CAS  Google Scholar 

  18. Harvey NL, Butt AJ, Kumar S (1997) Functional activation of Nedd2/ICH-1 (caspase-2) is an early process in apoptosis. J Biol Chem 272:13134–13139

    Article  CAS  Google Scholar 

  19. Kumar S (1995) Inhibition of apoptosis by the expression of antisense Nedd2. FEBS Lett 368:69–72

    Article  CAS  Google Scholar 

  20. Troy CM, Stefanis L, Greene LA, Shelanski M (1997) Nedd2 is required for apoptosis after trophic factor withdrawal, but not superoxide dismutase (SOD1) downregulation, in sympathetic neurons and PC12 cells. J Neurosci 17:1911–1918

    Article  CAS  Google Scholar 

  21. Wagner KW, Engels IH, Deveraux QL (2004) Caspase-2 can function upstream of Bid cleavage in the TRAIL apoptosis pathway. J Biol Chem 279:35047–35052

    Article  CAS  Google Scholar 

  22. Enoksson M, Robertson JD, Gogvadze V, Bu P, Kropotov A, Zhivotovsky B, Orrenius S (2004) Caspase-2 permeabilizes the outer mitochondrial membrane and disrupts the binding of cytochrome c to anionic phospholipids. J Biol Chem 279:49575–49578

    Article  CAS  Google Scholar 

  23. Robertson JD, Gogvadze V, Zhivotovsky B, Orrenius S (2000) Distinct pathways for stimulation of cytochrome c release by etoposide. J Biol Chem 275:32438–32443

    Article  CAS  Google Scholar 

  24. Shimuzu S, Eguchi Y, Kamiike W, Akao Y, Kosaka H, Hasegawa J, Matsuda H, Tsujimoto Y (1996) Involvement of ICE family proteases in apoptosis induced by reoxygenation of hypoxic hepatocytes. Am J Physiol 271:G949–G958

    Google Scholar 

  25. Harrison-Shostak DC, Lemasters JJ, Edgell CJ, Herman B (1997) Role of ICE-like proteases in endothelial cell hypoxic and reperfusion injury. Biochem Biophys Res Comm 231:844–847

    Article  CAS  Google Scholar 

  26. Hara H, Friedlander RM, Gagliardini V, Ayata C, Fink K, Huang Z, Shimizu-Sasamata M, Yuan J, Moskowitz MA (1997) Inhibition of interleukin-beta converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Proc Natl Acad Sci USA 94:2007–2012

    Article  CAS  Google Scholar 

  27. Kaushal GP, Ueda N, Shah SV (1997) Role of caspases (ICE/CED 3 proteases) in DNA damage and cell death in response to a mitochondrial inhibitor, antimycin A. Kidney Int 52:438–445

    Article  CAS  Google Scholar 

  28. Shi Y, Melnikov VY, Schrier RW, Edelstein CL (2000) Downregulation of the calpain inhibitor protein calpastatin by caspases during renal ischemia–reperfusion. Am J Physiol 279:F509–F517

    CAS  Google Scholar 

  29. Daemen MARC, Van’t Veer C, Denecker G, Heemskerk VH, Wolfs TGAM, Clauss M, Vandenabeele P, Buurman WA (1999) Inhibition of apoptosis induced by ischemia–reperfusion prevents inflammation. J Clin Invest 104:541–549

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Dr. Park is supported by grants from the Samsung Biomedical Research Institute (#SBRI C-A3-211-1) and from the Hyo Seok Research Fund in Kangbuk Samsung Hospital. Dr. Devarajan is supported by grants from the NIH/NIDDK (RO1-DK53289, P50-DK52612, R21-DK070163).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moon Soo Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, M.S., Kim, BS. & Devarajan, P. Hypoxia/re-oxygenation injury induces apoptosis of LLC-PK1 cells by activation of caspase-2. Pediatr Nephrol 22, 202–208 (2007). https://doi.org/10.1007/s00467-006-0256-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-006-0256-6

Keywords

Navigation