Skip to main content

Advertisement

Log in

Renal cystic diseases: diverse phenotypes converge on the cilium/centrosome complex

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Inherited renal cystic diseases constitute an important set of single-gene disorders that frequently progress to end stage renal disease (ESRD). Transmitted as autosomal dominant, autosomal recessive, or X-linked traits, renal cystic diseases are phenotypically diverse with respect to age at onset, rate of disease progression, and associated extra-renal manifestations. These disorders involve defects in a set of gene products commonly referred to as cystoproteins that, while functionally distinct, appear to co-localize, at least in part, with the cilia/centrosome complex. Therefore, investigations are increasingly focused on the role of this complex in the pathogenesis of renal cystic disease. Sorting out the functional relationship between these cystoproteins and the cilia/centrosome complex will undoubtedly provide a better understanding of renal cystic disease pathogenesis and, potentially, identify new targets for therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fick G, Gabow P (1994) Hereditary and acquired cystic disease of the kidney. Kidney Int 46:951–964

    CAS  PubMed  Google Scholar 

  2. D’Agata I, Jonas M, Perez-Atayde A, Guay-Woodford L (1994) Combined cystic disease of the liver and kidney. Semin Liver Dis 14:215–228

    PubMed  Google Scholar 

  3. Guay-Woodford L (2003) Murine models of polycystic kidney disease: molecular and therapeutic insights. Am J Physiol Renal Physiol 285:F1034–F1049

    CAS  PubMed  Google Scholar 

  4. Wilson P (2004) Polycystic kidney disease. N Engl J Med 350:151–164

    CAS  PubMed  Google Scholar 

  5. Gabow P, Grantham J (1997) Polycystic kidney disease. In Schrier R, Gottschalk C (eds) Diseases of the kidney. Little, Brown, Boston, pp 521–560

    Google Scholar 

  6. Chapman A, Gabow P (1997) Hypertension in autosomal dominant polycystic kidney disease. Kidney Int 61 [Suppl]:S71–S73

    CAS  Google Scholar 

  7. Hateboer N, v Dijk MV, Bogdanova N, Coto E, Saggar-Malik AK, San Millan JL, Torra R, Breuning M, Ravine D (1999) Comparison of phenotypes of polycystic kidney disease types 1 and 2. European PKD1-PKD2 Study Group. Lancet 353:103–107

    CAS  Google Scholar 

  8. Torres VE (2005) Vasopressin antagonists in polycystic kidney disease. Kidney Int 68:2405–2418

    PubMed  Google Scholar 

  9. Torres V, Harris P (2006) Mechanisms of disease: autosomal dominant and recessive polycystic kidney diseases. Nat Clin Pract Nephrol 2:40–55

    CAS  PubMed  Google Scholar 

  10. Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137

    CAS  PubMed  Google Scholar 

  11. Ong A, Harris P (2005) Molecular pathogenesis of ADPKD: the polycystin complex gets complex. Kidney Int 67:1234–1247

    CAS  PubMed  Google Scholar 

  12. Zerres K, Muecher G, Becker J, Steinkamm C, Rudnik-Schoneborn S, Heikkila P, Rapola J, Salonen R, Germino G, Onuchic L, Somlo S, Avner E, Harman L, Stockwin J, Guay-Woodford L (1998) Prenatal diagnosis of autosomal recessive polycystic kidney disease (ARPKD): molecular genetics, clinical experience, and fetal morphology. Am J Med Genet 76:137–144

    CAS  PubMed  Google Scholar 

  13. Guay-Woodford L, Desmond R (2003) Autosomal recessive polycystic kidney disease (ARPKD): the clinical experience in North America. Pediatrics 111:1072–1080

    PubMed  Google Scholar 

  14. Ward C, Hogan M, Rossetti S, Walker D, Sneddon T, Wang X, Kubly V, Cunningham J, Bacallao R, Ishibashi M, Milliner D, Torres V, Harris P (2002) The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat Genet 30:259–269

    PubMed  Google Scholar 

  15. Onuchic L, Furu L, Nagasawa Y, Hou X, Eggermann T, Ren Z, Bergmann C, Senderek J, Esquivel E, Zeltner R, Rudnik-Schöneborn S, Mrug M, Sweeney W, Avner E, Zerres K, Guay-Woodford L, Somlo S, Germino G (2002) PKHD1, the polycystic kidney and hepatic disease 1 gene, encodes a novel large protein containing multiple IPT domains and PbH1 repeats. Am J Hum Genet 70:1305–1317

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Xiong H, Chen Y, Yi Y, Tsuchiya K, Moeckel G, Cheung J, Liang D, Tham K, Xu X, Chen X, Pei Y, Zhao Z, Wu G (2002) A novel gene encoding a TIG multiple domain protein is a positional candidate for autosomal recessive polycystic kidney disease. Genomics 80:96–104

    CAS  PubMed  Google Scholar 

  17. Ward C, Yuan D, Masyuk T, Wang X, Punyashthiti R, Whelan S, Bacallao R, Torra R, LaRusso N, Torres V, Harris P (2003) Cellular and subcellular localization of the ARPKD protein; fibrocystin is expressed on primary cilia. Hum Mol Genet 12:2703–2710

    CAS  PubMed  Google Scholar 

  18. Menezes F, Cai Y, Nagasawa Y, Silva A, Watkins M, Silva A, Somlo S, Guay-Woodford L, Germino G, Onuchic L (2004) Polyductin, the PKHD1 gene product, comprises isoforms expressed in plasma membrane, primary cilium and cytoplasm. Kidney Int 66:1345–1355

    CAS  PubMed  Google Scholar 

  19. Zhang M, Mai W, Li C, Cho S, Hao C, Moeckel G, Zhao R, Kim I, Wang J, Xiong H, Wang H, Sato Y, Wu Y, Nakanuma Y, Lilova M, Pei Y, Harris R, Li S, Coffey R, Sun L, Wu D, Chen X, Breyer M, Zhao Z, McKanna J, Wu G (2004) PKHD1 protein encoded by the gene for autosomal recessive polycystic kidney disease associates with basal bodies and primary cilia in renal epithelial cells. Proc Natl Acad Sci USA 101:2311–2316

    CAS  PubMed  Google Scholar 

  20. Salomon R, Gubler M, Antignac C (2005) Nephronophthisis. In: Davidson A, Cameron J, Grunfeld J, Ponticelli C, Ritz E, Winearb C, Van Ypersele C (eds) Oxford text book of clinical nephrology. Oxford University Press, Oxford, pp 2325–2334

    Google Scholar 

  21. Saunier S, Salomon R, Antignac C (2005) Nephronophthisis. Curr Opin Genet Dev 15:324–331

    CAS  PubMed  Google Scholar 

  22. Hildebrandt F, Otto E (2005) Cilia and centrosomes: a unifying pathogenic concept for cystic kidney disease? Nat Rev Genet 6:928–940

    CAS  PubMed  Google Scholar 

  23. Parisi M, Bennett C, Eckert M, Dobyns W, Gleeson J, Shaw D, McDonald R, Eddy A, Chance P, Glass I (2004) The NPHP1 gene deletion associated with juvenile nephronophthisis is present in a subset of individuals with Joubert syndrome. Am J Hum Genet 75:82–91

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Dixon-Salazar T, Silhavy J, Marsh S, Louie C, Scott L, Gururaj A, Al-Gazali L, Al-Tawari A, Kayserili H, Sztriha L, Gleeson J (2004) Mutations in the AHI1 gene, encoding jouberin, cause Joubert syndrome with cortical polymicrogyria. Am J Hum Genet 75:979–987

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ferland R, Eyaid W, Collura R, Tully L, Hill R, Al-Nouri D, Al-Rumayyan A, Topcu M, Gascon G, Bodell A, Shugart Y, Ruvolo M, Walsh C (2004) Abnormal cerebellar development and axonal decussation due to mutations in AHI1 in Joubert syndrome. Nat Genet 36:1008–1013

    CAS  Google Scholar 

  26. Utsch B, Sayer J, Attanasio M, Pereira R, Eccles M, Hennies H, Otto E, Hildebrandt F (2006) Identification of the first AHI1 gene mutations in nephronophthisis-associated Joubert syndrome. Pediatr Nephrol 21:32–35

    PubMed  Google Scholar 

  27. Parisi M, Doherty D, Eckert M, Shaw D, Ozyurek H, Aysun S, Giray O, Al Swaid A, Al Shahwan S, Dohayan N, Bakhsh E, Indridason O, Dobyns W, Bennett C, Chance P, Glass I (2006) AHI1 mutations cause both retinal dystrophy and renal cystic disease in Joubert syndrome. J Med Genet 43:334–339

    CAS  PubMed  Google Scholar 

  28. Valente E, Brancati F, Silhavy J, Castori M, Marsh S, Barrano G, Bertini E, Boltshauser E, Zaki M, Abdel-Aleem A, Abdel-Salam G, Bellacchio E, Battini R, Cruse R, Dobyns W, Krishnamoorthy K, Lagier-Tourenne C, Magee A, Pascual-Castroviejo I, Salpietro C, Sarco D, Dallapiccola B, Gleeson J (2006) AHI1 gene mutations cause specific forms of Joubert syndrome-related disorders. Ann Neurol 59:527–534

    CAS  PubMed  Google Scholar 

  29. Beales P (2005) Lifting the lid on Pandora’s box: the Bardet–Biedl syndrome. Curr Opin Genet Dev 15:315–323

    CAS  PubMed  Google Scholar 

  30. Parfrey PS, Davidson WS, Green JS (2002) Clinical and genetic epidemiology of inherited renal disease in Newfoundland. Kidney Int 61:1925–1934

    PubMed  Google Scholar 

  31. Katsanis N (2004) The oligogenic properties of Bardet–Biedl syndrome. Hum Mol Genet 13 Spec No 1:R65–R71

    CAS  PubMed  Google Scholar 

  32. Moore S, Green J, Fan Y, Bhogal A, Dicks E, Fernandez B, Stefanelli M, Murphy C, Cramer B, Dean J, Beales P, Katsanis N, Bassett A, Davidson W, Parfrey P (2005) Clinical and genetic epidemiology of Bardet–Biedl syndrome in Newfoundland: a 22-year prospective, population-based, cohort study. Am J Med Genet 132:352–360

    Google Scholar 

  33. Nishimura D, Swiderski R, Searby C, Berg E, Ferguson A, Hennekam R, Merin S, Weleber R, Biesecker L, Stone E, Sheffield V (2005) Comparative genomics and gene expression analysis identifies BBS9, a new Bardet–Biedl syndrome gene. Am J Hum Genet 77:1021–1033

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Badano J, Leitch C, Ansley S, May-Simera H, Lawson S, Lewis R, Beales P, Dietz H, Fisher S, Katsanis N (2006) Dissection of epistasis in oligogenic Bardet–Biedl syndrome. Nature 439:326–330

    CAS  PubMed  Google Scholar 

  35. Badano J, Teslovich T, Katsanis N (2005) The centrosome in human genetic disease. Nat Rev Genet 6:194–205

    CAS  PubMed  Google Scholar 

  36. Salonen R, Paavola P (1998) Meckel syndrome. J Med Genet 35:497–501

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Simpson J, Mills J, Rhoads G, Cunningham G, Conley M, Hoffman H (1991) Genetic heterogeneity in neural tube defects. Ann Genet 34:279–286

    CAS  PubMed  Google Scholar 

  38. Smith U, Consugar M, Tee L, McKee B, Maina E, Whelan S, Morgan N, Goranson E, Gissen P, Lilliquist S, Aligianis I, Ward C, Pasha S, Punyashthiti R, Malik Sharif S, Batman P, Bennett C, Woods C, McKeown C, Bucourt M, Miller C, Cox P, Algazali L, Trembath R, Torres V, Attie-Bitach T, Kelly D, Maher E, Gattone V, Harris P, Johnson C (2006) The transmembrane protein meckelin (MKS3) is mutated in Meckel–Gruber syndrome and the wpk rat. Nat Genet 38:191–196

    CAS  PubMed  Google Scholar 

  39. Kyttala M, Tallila J, Salonen R, Kopra O, Kohlschmidt N, Paavola-Sakki P, Peltonen L, Kestila M (2006) MKS1, encoding a component of the flagellar apparatus basal body proteome, is mutated in Meckel syndrome. Nat Genet 38:155–157

    PubMed  Google Scholar 

  40. Feather S, Woolf A, Donnai D, Malcolm S, Winter R (1997) The oral-facial-digital syndrome type 1 (OFD1), a cause of polycystic kidney disease and associated malformations, maps to Xp22.2-Xp22.3. Hum Mol Genet 6:1163–1167

    CAS  PubMed  Google Scholar 

  41. Ferrante M, Giorgio G, Feather S, Bulfone A, Wright V, Ghiani M, Selicorni A, Gammaro L, Scolari F, Woolf A, Sylvie O, Bernard L, Malcolm S, Winter R, Ballabio A (2001) Identification of the gene for oral-facial-digital type I syndrome. Am J Hum Genet 68:569–576

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Romio L, Fry A, Winyard P, Malcolm S, Woolf A, Feather S (2004) OFD1 is a centrosomal/basal body protein expressed during mesenchymal–epithelial transition in human nephrogenesis. J Am Soc Nephrol 15:2556–2568

    CAS  PubMed  Google Scholar 

  43. Ferrante M, Zullo A, Barra A, Bimonte S, Messaddeq N, Studer M, Dolle P, Franco B (2006) Oral-facial-digital type I protein is required for primary cilia formation and left–right axis specification. Nat Genet 38:112–117

    CAS  PubMed  Google Scholar 

  44. Pazour GJ (2004) Intraflagellar transport and cilia-dependent renal disease: the ciliary hypothesis of polycystic kidney disease. J Am Soc Nephrol 15:2528–2536

    PubMed  Google Scholar 

  45. Davenport J, Yoder B (2005) An incredible decade for the primary cilium: a look at a once-forgotten organelle. Am J Physiol Renal Physiol 289:F1159–F1169

    CAS  PubMed  Google Scholar 

  46. Pazour G, Rosenbaum J (2002) Intraflagellar transport and cilia-dependent diseases. Trends Cell Biol 12:551–555

    CAS  PubMed  Google Scholar 

  47. Praetorius H, Spring K (2005) A physiological view of the primary cilium. Annu Rev Physiol 67:515–529

    CAS  PubMed  Google Scholar 

  48. Yamaguchi T, Wallace DP, Magenheimer BS, Hempson SJ, Grantham JJ, Calvet JP (2004) Calcium restriction allows cAMP activation of the B-Raf/ERK pathway, switching cells to a cAMP-dependent growth-stimulated phenotype. J Biol Chem 279:40419–40430

    CAS  PubMed  Google Scholar 

  49. Simons M, Gloy J, Ganner A, Bullerkotte A, Bashkurov M, Kronig C, Schermer B, Benzing T, Cabello O, Jenny A, Mlodzik M, Polok B, Driever W, Obara T, Walz G (2005) Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat Genet 37:537–543

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Germino G (2005) Linking cilia to Wnts. Nat Genet 37:455–457

    CAS  PubMed  Google Scholar 

  51. Chauvet V, Tian X, Husson H, Grimm D, Wang T, Hieseberger T, Igarashi P, Bennett A, Ibraghimov-Beskrovnaya O, Somlo S, Caplan M (2004) Mechanical stimuli induce the cleavage and nuclear translocation of the polycystin-1 C-terminus. J Clin Invest 114:1433–1443. For corrected article see J Clin Invest 2005;115:788

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

Supported in part by a Clinical Scientist Award in Translational Research from the Burroughs-Wellcome Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa M. Guay-Woodford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guay-Woodford, L.M. Renal cystic diseases: diverse phenotypes converge on the cilium/centrosome complex. Pediatr Nephrol 21, 1369–1376 (2006). https://doi.org/10.1007/s00467-006-0164-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-006-0164-9

Keywords

Navigation