Skip to main content

Advertisement

Log in

Chloroacetaldehyde- and acrolein-induced death of human proximal tubule cells

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Ifosfamide (ifo) is a commonly used drug in chemotherapy. It is metabolized to acrolein (acro) and chloroacetaldehyde (CAA), which are thought to be responsible for renal side effects. We studied the effects of ifo and cyclophosphamide (cyclo) as well as their metabolites, acro and CAA, on cellular protein content, necrosis, apoptosis and cytosolic calcium concentration using a human proximal tubule cell line. The protein content decreased during acro or CAA administration (15 to 300 µmol/l), but not during ifo or cyclo exposure over a time period of up to 72 h. Mild apoptosis was induced only by high acro (150, 300 µmol/l) and low CAA concentrations (15, 75 µmol/l) and only in a narrow time window (24 h). Necrosis was increased after exposure to acro or CAA at all concentrations. CAA was more potent than acro. Ifo and cyclo did not induce necrosis or apoptosis. Glutathione abolished CAA-induced cell death. Cytosolic calcium concentrations increased after acro or CAA administration and showed an oscillating pattern. Cytosolic Ca2+ chelation did not prevent necrosis. We conclude that neither ifo nor cyclo induce cell damage, but that their metabolites acro and CAA induce cell death. This cell death occurs mainly by necrosis and not by apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jürgens H (1997) Recent advances in childhood cancer. Eur J Cancer 33a:S15–S22

    Google Scholar 

  2. Dechant KL, Brogden RN, Pilkington T, Faulds D (1991) Ifosfamide/mesna. A review of its antineoplastic activity, pharmacokinetic properties and therapeutic efficacy in cancer. Drugs 42:428–467

    Article  CAS  PubMed  Google Scholar 

  3. Kerbusch T, de Kraker J, Keizer HJ, van Putten JW, Groen HJ, Jansen RL, Schellens JH, Beijnen JH (2001) Clinical pharmacokinetics and pharmacodynamics of ifosfamide and its metabolites. Clin Pharmacokinet 40:41–62

    Article  CAS  PubMed  Google Scholar 

  4. Woodland C, Ito S, Granvil CP, Wainer IW, Klein J, Koren G (2000) Evidence of renal metabolism of ifosfamide to nephrotoxic metabolites. Life Sci 68:109–117

    Article  CAS  PubMed  Google Scholar 

  5. Dubourg L, Michoudet C, Cochat P, Baverel G (2001) Human kidney tubules detoxify chloroacetaldehyde, a presumed nephrotoxic metabolite of ifosfamide. J Am Soc Nephrol 12:1615–1623

    CAS  PubMed  Google Scholar 

  6. Pratt CB, Meyer WH, Jenkins JJ, Avery L, McKay CP, Wyatt RJ, Hancock ML (1991) Ifosfamide, Fanconi’s syndrome, and rickets. J Clin Oncol 9:1495–1499

    CAS  PubMed  Google Scholar 

  7. Rossi R, Godde A, Kleinebrand A, Riepenhausen M, Boos J, Ritter J, Jurgens H (1994) Unilateral nephrectomy and cisplatin as risk factors of ifosfamide-induced nephrotoxicity: analysis of 120 patients. J Clin Oncol 12:159–165

    CAS  PubMed  Google Scholar 

  8. Suarez A, McDowell H, Niaudet P, Comoy E, Flamant F (1991) Long-term follow-up of ifosfamide renal toxicity in children treated for malignant mesenchymal tumors: an International Society of Pediatric Oncology report. J Clin Oncol 9:2177–2182

    CAS  PubMed  Google Scholar 

  9. Raney B, Ensign LG, Foreman J, Khan F, Newton W, Ortega J, Ragab A, Wharam M, Wiener E, Maurer H (1994) Renal toxicity of ifosfamide in pilot regimens of the intergroup rhabdomyosarcoma study for patients with gross residual tumor. Am J Pediatr Hematol Oncol 16:286–295

    CAS  PubMed  Google Scholar 

  10. Skinner R (2003) Chronic ifosfamide nephrotoxicity in children. Med Pediatr Oncol 41:190–197

    Article  CAS  PubMed  Google Scholar 

  11. Rossi R, Kleta R, Ehrich JH (1999) Renal involvement in children with malignancies. Pediatr Nephrol 13:153–162

    Article  CAS  PubMed  Google Scholar 

  12. Rossi R, Pleyer J, Schafers P, Kuhn N, Kleta R, Deufel T, Jurgens H (1999) Development of ifosfamide-induced nephrotoxicity: prospective follow-up in 75 patients. Med Pediatr Oncol 32:177–182

    Article  CAS  PubMed  Google Scholar 

  13. Mohrmann M, Ansorge S, Schmich U, Schonfeld B, Brandis M (1994) Toxicity of ifosfamide, cyclophosphamide and their metabolites in renal tubular cells in culture. Pediatr Nephrol 8:157–163

    Article  CAS  PubMed  Google Scholar 

  14. Mohrmann M, Pauli A, Ritzer M, Schonfeld B, Seifert B, Brandis M (1992) Inhibition of sodium-dependent transport systems in LLC-PK1 cells by metabolites of ifosfamide. Ren Physiol Biochem 15:289–301

    CAS  PubMed  Google Scholar 

  15. Mohrmann M, Ansorge S, Schonfeld B, Brandis M (1994) Dithio-bis-mercaptoethanesulphonate (DIMESNA) does not prevent cellular damage by metabolites of ifosfamide and cyclophosphamide in LLC-PK1 cells. Pediatr Nephrol 8:458–465

    Article  CAS  PubMed  Google Scholar 

  16. Ferrari D, Pinton P, Szabadkai G, Chami M, Campanella M, Pozzan T, Rizzuto R (2002) Endoplasmic reticulum, Bcl-2 and Ca2+ handling in apoptosis. Cell Calcium 32:413–420

    Article  CAS  PubMed  Google Scholar 

  17. Zhu LP, Yu XD, Ling S, Brown RA, Kuo TH (2000) Mitochondrial Ca(2+)homeostasis in the regulation of apoptotic and necrotic cell deaths. Cell Calcium 28:107–117

    Article  CAS  PubMed  Google Scholar 

  18. Schwerdt G, Freudinger R, Schuster C, Silbernagl S, Gekle M (2003) Inhibition of mitochondria prevents cell death in kidney epithelial cells by intra- and extracellular acidification. Kidney Int 63:1725–1735

    Article  CAS  PubMed  Google Scholar 

  19. Seefelder W, Humpf HU, Schwerdt G, Freudinger R, Gekle M (2002) Induction of apoptosis in cultured human proximal tubule cells by fumonisins and fumonisin metabolites. Toxicol Appl Pharmacol 192:146–153

    Article  Google Scholar 

  20. Tew KD (1994) Glutathione-associated enzymes in anticancer drug resistance. Cancer Res 54:4313–4320

    CAS  PubMed  Google Scholar 

  21. Pastore A, Federici G, Bertini E, Piemonte F (2003) Analysis of glutathione: implication in redox and detoxification. Clin Chim Acta 333:19–39

    Article  CAS  PubMed  Google Scholar 

  22. Springate JE, Chan K, Lu H, Davies S, Taub M (1999) Toxicity of ifosfamide and its metabolite chloroacetaldehyde in cultured renal tubule cells. In Vitro Cell Dev Biol Anim 35:314–317

    Article  CAS  PubMed  Google Scholar 

  23. Sood C, O’Brien PJ (1993) Molecular mechanisms of chloroacetaldehyde-induced cytotoxicity in isolated rat hepatocytes. Biochem Pharmacol 46:1621–1626

    Article  CAS  PubMed  Google Scholar 

  24. Sood C, O’Brien PJ (1996) 2-Chloroacetaldehyde-induced cerebral glutathione depletion and neurotoxicity. Br J Cancer [Suppl] 27:S287–S293

    Google Scholar 

  25. Lind MJ, McGown AT, Hadfield JA, Thatcher N, Crowther D, Fox BW (1989) The effect of ifosfamide and its metabolites on intracellular glutathione levels in vitro and in vivo. Biochem Pharmacol 38:1835–1840

    Article  CAS  PubMed  Google Scholar 

  26. Tveito G, Hansteen I, Dalen H, Haugen A (1989) Immortalization of normal human kidney epithelial cells by nickel(II). Cancer Res 49:1829–1835

    CAS  PubMed  Google Scholar 

  27. Hirsch JR, Gonska T, Waldegger S, Lang F, Schlatter E (1998) Na(+)-dependent and -independent amino acid transport systems in immortalized human kidney epithelial cells derived from the proximal tubule. Kidney Blood Press Res 21:50–58

    Article  CAS  PubMed  Google Scholar 

  28. Drumm K, Gassner B, Silbernagl S, Gekle M (2001) Albumin in the mg/l-range activates NF-kappaB in renal proximal tubule-derived cell lines via tyrosine kinases and protein kinase C. Eur J Med Res 6:247–258

    CAS  PubMed  Google Scholar 

  29. Ludwig T, Riethmüller C, Gekle M, Schwerdt G, Oberleithner H (2004) Nephrotoxicity of platinum complexes is related to basolateral organic cation transport. Kidney Int 66:196–202

    Article  CAS  PubMed  Google Scholar 

  30. Schwerdt G, Freudinger R, Mildenberger S, Silbernagl S, Gekle M (1999) The nephrotoxin ochratoxin A induces apoptosis in cultured human proximal tubule cells. Cell Biol Toxicol 15:405–415

    Article  CAS  PubMed  Google Scholar 

  31. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    CAS  PubMed  Google Scholar 

  32. Gordjani N, Epting T, Fischer-Riepe P, Greger RF, Brandis M, Leipziger J, Nitschke R (2000) Cyclosporin-A-induced effects on the free Ca2+ concentration in LLC-PK1-cells and their mechanisms. Pflügers Arch 439:627–633

    Google Scholar 

  33. Bergmeyer HU, Bernt E (1974) Laktat-Dehydrogenase. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse. Verlag Chemie, Weinheim, pp 607–612

  34. Pendyala L, Creaven PJ, Schwartz G, Meropol NJ, Bolanowska-Higdon W, Zdanowicz J, Murphy M, Perez R (2000) Intravenous ifosfamide/mesna is associated with depletion of plasma thiols without depletion of leukocyte glutathione. Clin Cancer Res 6:1314–1321

    CAS  PubMed  Google Scholar 

  35. Hasin Y, Doorey A, Barry WH (1984) Effects of calcium flux inhibitors on contracture and calcium content during inhibition of high energy phosphate production in cultured heart cells. J Mol Cell Cardiol 16:823–834

    Article  CAS  PubMed  Google Scholar 

  36. Narahashi T, Tsunoo A, Yoshii M (1987) Characterization of two types of calcium channels in mouse neuroblastoma cells. J Physiol 383:231–249

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Furlanut M, Franceschi L (2003) Pharmacology of ifosfamide. Oncology 65:2–6

    Article  CAS  PubMed  Google Scholar 

  38. Zamlauski-Tucker MJ, Morris ME, Springate JE (1994) Ifosfamide metabolite chloroacetaldehyde causes Fanconi syndrome in the perfused rat kidney. Toxicol Appl Pharmacol 129:170–175

    Article  CAS  PubMed  Google Scholar 

  39. Springate JE (1997) Ifosfamide metabolite chloroacetaldehyde causes renal dysfunction in vivo. J Appl Toxicol 17:75–79

    Article  CAS  PubMed  Google Scholar 

  40. Tang DG, La E, Kern J, Kehrer JP (2002) Fatty acid oxidation and signaling in apoptosis. Biol Chem 383:425–442

    Article  CAS  PubMed  Google Scholar 

  41. Slater AF, Stefan C, Nobel I, van den Dobbelsteen DJ, Orrenius S (1995) Signalling mechanisms and oxidative stress in apoptosis. Toxicol Lett 82–83:149–153

    Google Scholar 

  42. Fernandes RS, Cotter TG (1994) Apoptosis or necrosis: intracellular levels of glutathione influence mode of cell death. Biochem Pharmacol 48:675–681

    Article  CAS  PubMed  Google Scholar 

  43. Trump BF, Berezesky IK (1995) Calcium-mediated cell injury and cell death. FASEB J 9:219–228

    CAS  PubMed  Google Scholar 

  44. Rizzuto R, Pinton P, Ferrari D, Chami M, Szabadkai G, Magalhaes PJ, Di Virgilio F, Pozzan T (2003) Calcium and apoptosis: facts and hypotheses. Oncogene 22:8619–8627

    Article  CAS  PubMed  Google Scholar 

  45. Mattson MP, Chan SL (2003) Calcium orchestrates apoptosis. Nat Cell Biol 5:1041–1043

    Article  CAS  PubMed  Google Scholar 

  46. Cerny T, Küpfer A (1989) Stabilization and quantitative determinationof the neurotoxic metabolite chloroacetaldehyde in the plasma of ifosfamide treated patients. Proceedings of the Fifth European Conference on Clinical Oncology, 147. London

  47. Goren MP, Wright RK, Pratt CB, Pell FE (1986) Dechloroethylation of ifosfamide and neurotoxicity. Lancet 2:1219–1220

    Article  CAS  PubMed  Google Scholar 

  48. Cheung JY, Constantine JM, Bonventre JV (1986) Regulation of cytosolic free calcium concentration in cultured renal epithelial cells. Am J Physiol 251: F690–F701

    CAS  PubMed  Google Scholar 

  49. Dubourg L, Taniere P, Cochat P, Baverel G, Michoudet C (2002) Toxicity of chloroacetaldehyde is similar in adult and pediatric kidney tubules. Pediatr Nephrol 17:97–103

    Article  PubMed  Google Scholar 

  50. Sener G, Sehirli O, Yegen BC, Cetinel S, Gedik N, Sakarcan A (2004) Melatonin attenuates ifosfamide-induced Fanconi syndrome in rats. J Pineal Res 37:17–25

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.B. was supported by DFG grant BE 3168/1–1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Schwerdt.

Additional information

M. Gekle and N. Gordjani contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwerdt, G., Gordjani, N., Benesic, A. et al. Chloroacetaldehyde- and acrolein-induced death of human proximal tubule cells. Pediatr Nephrol 21, 60–67 (2006). https://doi.org/10.1007/s00467-005-2006-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-005-2006-6

Keywords

Navigation