Skip to main content

Advertisement

Log in

Assessment of bone mass following renal transplantation in children

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Throughout childhood and adolescence, skeletal growth results in site-specific increases in trabecular and cortical dimensions and density. Childhood osteoporosis can be defined as a skeletal disorder characterized by compromised bone strength predisposing to an increased risk of fracture. Pediatric renal transplant recipients have multiple risk factors for impaired bone density and bone strength, including pre-existing renal osteodystrophy, delayed growth and development, malnutrition, decreased weight-bearing activity, inflammation, and immunosuppressive therapies. Dual energy X-ray absorptiometry (DXA) is the most-common method for the assessment of skeletal status in children and adults. However, DXA has many important limitations that are unique to the assessment of bone health in children. Furthermore, DXA is limited in its ability to distinguish between the distinct, and sometimes opposing, effects of renal disease on cortical and trabecular bone. This review summarizes these limitations and the difficulties in assessing and interpreting bone measures in pediatric transplantation are highlighted in a review of select studies. Alternative strategies are presented for clinical and research applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bailey DA, Faulkner KG, McKay HA, Drinkwater DT, Mirwald RL (1996) Bone mineral acquisition during the adolescent growth spurt. J Bone Miner Res 11:S465

    Google Scholar 

  2. NIH (2000) Osteoporosis prevention, diagnosis, and therapy. NIH Consensus Statement. 17:1–36

    Google Scholar 

  3. WHO (1994) The WHO Study Group: assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Geneva, Switzerland

    Google Scholar 

  4. Gafni RI, Baron J (2004) Overdiagnosis of osteoporosis in children due to misinterpretation of dual-energy x-ray absorptiometry (DEXA). J Pediatr 144:253–257

    Google Scholar 

  5. Khosla S, Melton LJ 3rd, Dekutoski MB, Achenbach SJ, Oberg AL, Riggs BL (2003) Incidence of childhood distal forearm fractures over 30 years: a population-based study. JAMA 290:1479–1485

    Article  CAS  PubMed  Google Scholar 

  6. Landin LA (1997) Epidemiology of children’s fractures. J Pediatr Orthop 6:79–83

    Google Scholar 

  7. Jones IE, Williams SM, Dow N, Goulding A (2002) How many children remain fracture-free during growth? A longitudinal study of children and adolescents participating in the Dunedin Multidisciplinary Health and Development Study. Osteoporos Int 13:990–995

    Article  Google Scholar 

  8. Chan GM, Hess M, Hollis J, Book LS (1984) Bone mineral status in childhood accidental fractures. Am J Dis Child 138:569–570

    Google Scholar 

  9. Goulding A, Cannan R, Williams SM, Gold EJ, Taylor RW, Lewis-Barned NJ (1998) Bone mineral density in girls with forearm fractures. J Bone Miner Res 13:143–148

    CAS  PubMed  Google Scholar 

  10. Goulding A, Jones IE, Taylor RW, Manning PJ, Williams SM (2000) More broken bones: a 4-year double cohort study of young girls with and without distal forearm fractures. J Bone Miner Res 15:2011–2018

    CAS  PubMed  Google Scholar 

  11. Goulding A, Jones IE, Taylor RW, Williams SM, Manning PJ (2001) Bone mineral density and body composition in boys with distal forearm fractures: a dual-energy x-ray absorptiometry study. J Pediatr 139:509–515

    Article  CAS  PubMed  Google Scholar 

  12. Ma DQ, Jones G (2002) Clinical risk factors but not bone density are associated with prevalent fractures in prepubertal children. J Paediatr Child Health 38:497–500

    Article  Google Scholar 

  13. Ma D, Jones G (2003) The association between bone mineral density, metacarpal morphometry, and upper limb fractures in children: a population-based case-control study. J Clin Endocrinol Metab 88:1486–1491

    Article  CAS  PubMed  Google Scholar 

  14. Semeao EJ, Stallings VA, Peck SN, Piccoli DA (1997) Vertebral compression fractures in pediatric patients with Crohn’s disease. Gastroenterology 112:1710–1713

    Google Scholar 

  15. Caulton JM, Ward KA, Alsop CW, Dunn G, Adams JE, Mughal MZ (2004) A randomised controlled trial of standing programme on bone mineral density in non-ambulant children with cerebral palsy. Arch Dis Child 89:131–135

    Article  Google Scholar 

  16. Skaggs DL, Loro ML, Pitukcheewanont P, Tolo V, Gilsanz V (2001) Increased body weight and decreased radial cross-sectional dimensions in girls with forearm fractures. J Bone Miner Res 16:1337–1342

    CAS  PubMed  Google Scholar 

  17. Leonard MB, Feldman HI, Zemel BS, Berlin JA, Barden EM, Stallings VA (1998) Evaluation of low density spine software for the assessment of bone mineral density in children. J Bone Miner Res 13:1687–1690

    CAS  PubMed  Google Scholar 

  18. Zemel BS, Leonard MB, Stallings VA (2000) Evaluation of the Hologic experimental pediatric whole body analysis software in healthy children and children with chronic disease (abstract). Am Soc Bone Miner Res 15 [Suppl 1]:S400

  19. Kelly TL (2002) Pediatric whole body measurements (abstract). J Bone Miner Res 17 [Suppl 1]:S296

  20. Pocock NA, Noakes KA, Majerovic Y, Griffiths MR (1997) Magnification error of femoral geometry using fan beam densitometers. Calcif Tissue Int 60:8–10

    Article  CAS  PubMed  Google Scholar 

  21. Blake GM (1993) Dual X-ray absorptiometry: a comparison between fan beam and pencil beam scans. Br J Radiol 66:902–906

    Google Scholar 

  22. Mitsnefes MM, Khoury P, McEnery PT (2002) Body mass index and allograft function in pediatric renal transplantation. Pediatr Nephrol 17:535–539

    Google Scholar 

  23. Southard RN, Morris JD, Mahan JD, Hayes JR, Torch MA, Sommer A, Zipf WB (1991) Bone mass in healthy children: measurement with quantitative DXA. Radiology 179:735–738

    CAS  PubMed  Google Scholar 

  24. Henderson RC, Madsen CD (1996) Bone density in children and adolescents with cystic fibrosis. J Pediatr 128:28–34

    Google Scholar 

  25. Bonjour JP, Theintz G, Buchs B, Slosman D, Rizzoli R (1991) Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocrinol Metab 73:555–563

    CAS  PubMed  Google Scholar 

  26. Faulkner RA, Bailey DA, Drinkwater DT, McKay HA, Arnold C, Wilkinson AA (1996) Bone densitometry in Canadian children 8–17 years of age. Calcif Tissue Int 59:344–351

    Article  Google Scholar 

  27. Glastre C, Braillon P, David L, Cochat P, Meunier PJ, Delmas PD (1990) Measurement of bone mineral content of the lumbar spine by dual energy x-ray absorptiometry in normal children: correlations with growth parameters. J Clin Endocrinol Metab 70:1330–1333

    CAS  PubMed  Google Scholar 

  28. Leonard MB, Propert KJ, Zemel BS, Stallings VA, Feldman HI (1999) Discrepancies in pediatric bone mineral density reference data: potential for misdiagnosis of osteopenia. J Pediatr 135:182–188

    Google Scholar 

  29. Saland JM, Goode ML, Haas DL, Romano TA, Seikaly MG (2001) The prevalence of osteopenia in pediatric renal allograft recipients varies with the method of analysis. Am J Transplant 1:243–250

    Article  Google Scholar 

  30. Klaus G, Paschen C, Wuster C, Kovacs GT, Barden J, Mehls O, Scharer K (1998) Weight-/height-related bone mineral density is not reduced after renal transplantation. Pediatr Nephrol 12:343–348

    Google Scholar 

  31. Boot AM, Bouquet J, Krenning EP, Muinck Keizer-Schrama SM de (1998) Bone mineral density and nutritional status in children with chronic inflammatory bowel disease. Gut 42:188–194

    CAS  PubMed  Google Scholar 

  32. Molgaard C, Thomsen BL, Prentice A, Cole TJ, Michaelsen KF (1997) Whole body bone mineral content in healthy children and adolescents. Arch Dis Child 76:9–15

    Google Scholar 

  33. Carter DR, Bouxsein ML, Marcus R (1992) New approaches for interpreting projected bone densitometry data. J Bone Miner Res 7:137–145

    CAS  PubMed  Google Scholar 

  34. Kroger H, Vainio P, Nieminen J, Kotaniemi A (1995) Comparison of different models for interpreting bone mineral density measurements using DXA and MRI technology. Bone 17:157–159

    Article  CAS  PubMed  Google Scholar 

  35. Lu PW, Cowell CT, SA LL-J, Briody JN, Howman-Giles R (1996) Volumetric bone mineral density in normal subjects, aged 5–27 years. J Clin Endocrinol Metab 81:1586–1590

    Article  CAS  PubMed  Google Scholar 

  36. Katzman DK, Bachrach LK, Carter DR, Marcus R (1991) Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girls. J Clin Endocrinol Metab 73:1332–1339

    CAS  PubMed  Google Scholar 

  37. Ferretti JL, Capozza RF, Cointry GR, Garcia SL, Plotkin H, Alvarez Filgueira ML, Zanchetta JR (1998) Gender-related differences in the relationship between densitometric values of whole-body bone mineral content and lean body mass in humans between 2 and 87 years of age. Bone 22:683–690

    Article  Google Scholar 

  38. Schonau E, Westermann F, Mokow E, Scheidhauer K, Werhahn E, Stabrey A, Muller-Berghaus J (1998) The functional muscle-bone unit in health and disease. Paediatr Osteol 1154:191–202

    Google Scholar 

  39. Goulding A, Taylor RW, Jones IE, McAuley KA, Manning PJ, Williams SM (2000) Overweight and obese children have low bone mass and area for their weight. Int J Obes Relat Metab Disord 24:627–632

    Article  Google Scholar 

  40. Weiler HA, Janzen L, Green K, Grabowski J, Seshia MM, Yuen KC (2000) Percent body fat and bone mass in healthy Canadian females 10 to 19 years of age. Bone 27:203–207

    Article  Google Scholar 

  41. Laursen E, Molgaard C, Michaelsen K, et al (1999) Bone mineral status in 134 patients with cystic fibrosis. Arch Dis Child 81:235–240

    Google Scholar 

  42. Nysom K, Molgaard C, Michaelsen KF (1998) Bone mineral density in the lumbar spine as determined by dual-energy X-ray absorptiometry. Comparison of whole-body scans and dedicated regional scans. Acta Radiol 39:632–636

    Google Scholar 

  43. Leonard MB, Shults J, Elliott DM, Stallings VA, Zemel BS (2004) Interpretation of whole body dual energy X-ray absorptiometry measures in children: comparison with peripheral quantitative computed tomography. Bone 34:1044–1052

    Article  Google Scholar 

  44. Leonard MB, Shults J, Wilson BA, Stallings VA, Zemel BS (2004) Obesity during childhood and adolescence augments bone mass and bone dimensions. Am J Clin Nutr 80:514–523

    Google Scholar 

  45. Leonard MB, Feldman HI, Shults J, Zemel BS, Foster BJ, Stallings VA (2004) Long-term high-dose glucocorticoids and bone mineral content in childhood glucocorticoid-sensitive nephrotic syndrome. New Engl J Med 351:868–875

    Google Scholar 

  46. Burnham JM, Shults J, Semeao EJ, Foster BJ, Zemel BS, Stallings VA, Leonard MB (2004) Whole body bone mineral content in pediatric Crohn disease: independent effects of altered growth, maturation and body composition. J Bone Miner Res 19:1961–1968

    Google Scholar 

  47. Giannini S, D’Angelo A, Carraro G, Antonello A, Di Landro D, Marchini F, Plebani M, Zaninotto M, Rigotti P, Sartori L, Crepaldi G (2001) Persistently increased bone turnover and low bone density in long-term survivors to kidney transplantation. Clin Nephrol 56:353–363

    CAS  PubMed  Google Scholar 

  48. Cruz D, Wysolmerski J, Brickel H, Insogna K, Bia M (1999) High bone-turnover contributes to bone loss following renal transplantation. J Am Soc Nephrol 10:A3817

    Google Scholar 

  49. Cayco AV (2000) Posttransplant bone disease: evidence for a high bone resorption state. Transplantation 70:1722–1728

    Article  CAS  PubMed  Google Scholar 

  50. Duan Y, De Luca V, Seeman E (1999) Parathyroid hormone deficiency and excess: similar effects on trabecular bone but differing effects on cortical bone. J Clin Endocrinol Metab 84:718–722

    Article  Google Scholar 

  51. Parfitt AM (1998) A structural approach to renal bone disease. J Bone Miner Res 13:1213–1220

    CAS  PubMed  Google Scholar 

  52. Miller MA, Chin J, Miller SC (1998) Disparate effects of mild, moderate, and severe secondary hyperparathyroidism on cancellous and cortical bone in rats with chronic renal insufficiency. Bone 23:257–266

    Article  Google Scholar 

  53. Kim H, Chang K, Lee T, Kwon J, Park S (1998) Bone mineral density after renal transplantation. Transplant Proc 30:3029–3030

    Article  Google Scholar 

  54. Hurst G, Alloway R, Hathaway D, Somerville T, Hughes T, Gaber A (1998) Stabilization of bone mass after renal transplant with preemptive care. Transplant Proc 30:1327–1328

    Article  Google Scholar 

  55. Aroldi A, Tarantino A, Montagnino G, Cesana B, Cocucci C, Ponticelli C (1997) Effects of three immunosuppressive regimens on vertebral bone density in renal transplant recipients: a prospective study. Transplantation 63:380–386

    Google Scholar 

  56. Pichette V, Bonnardeaux A, Prudhomme L, Gagne M, Cardinal J, Ouimet D (1996) Long-term bone loss in kidney transplant recipients: a cross-sectional and longitudinal study. Am J Kidney Dis 28:105–114

    CAS  PubMed  Google Scholar 

  57. Setterberg L, Sandberg J, Elinder CG, Nordenstrom J (1996) Bone demineralization after renal transplantation: contribution of secondary hyperparathyroidism manifested by hypercalcaemia. Nephrol Dial Transplant 11:1825–1828

    Google Scholar 

  58. Yazawa K, Ishikawa T, Ichikawa Y, Shin J, Usui Y, Hanafusa T, Fukunishi T, Sakai R, Nagano S, Fujita N, Mizuno K (1998) Positive effects of kidney transplantation on bone mass. Transplant Proc 30:3031–3033

    Article  Google Scholar 

  59. Faugere M-C, Qi Q, Mawad H, Friedler RM, Malluche HH (1999) High prevalence of low bone turnover and delayed mineralization in patients after kidney transplantation. J Am Soc Nephrol 10:A3823

    Google Scholar 

  60. Yamaguchi T, Kanno E, Tsubota J, Shiomi T, Nakai M, Hattori S (1996) Retrospective study on the usefulness of radius and lumbar bone density in the separation of hemodialysis patients with fractures from those without fractures. Bone 19:549–555

    Article  CAS  PubMed  Google Scholar 

  61. Jamal SA, Chase C, Goh YI, Richardson R, Hawker GA (2002) Bone density and heel ultrasound testing do not identify patients with dialysis-dependent renal failure who have had fractures. Am J Kidney Dis 39:843–849

    Google Scholar 

  62. Piraino B, Chen T, Cooperstein L, Segre G, Puschett J (1988) Fractures and vertebral bone mineral density in patients with renal osteodystrophy. Clin Nephrol 30:57–62

    CAS  PubMed  Google Scholar 

  63. Torres A, Lorenzo V, Gonzalez-Posada JM (1986) Comparison of histomorphometry and computerized tomography of the spine in quantitating trabecular bone in renal osteodystrophy. Nephron 44:282–287

    Google Scholar 

  64. Tsurusaki K, Ito M, Hayashi K (2000) Differential effects of menopause and metabolic disease on trabecular and cortical bone assessed by peripheral quantitative computed tomography (pQCT). Br J Radiol 73:14–22

    Google Scholar 

  65. Link TM, Saborowski, Kisters K, Kempkes M, Kosch M, Newitt D, Lu Y, Waldt S, Majumdar S (2002) Changes in calcaneal trabecular bone structure assessed with high-resolution MR imaging in patients with kidney transplantation. Osteoporos Int 13:119–129

    Article  CAS  PubMed  Google Scholar 

  66. Wehrli FW, Leonard MB, Saha PK, Gomberg BR (2004) Quantitative high-resolution magnetic resonance imaging reveals structural implications of renal osteodystrophy on trabecular and cortical bone. J Magn Reson Imaging 20:83–89

    Article  Google Scholar 

  67. Feber J, Braillon P, David L, Cochat P (2001) Body composition in children after renal transplantation. Am J Kidney Dis 38:366–370

    Google Scholar 

  68. Bartosh SM, Leverson G, Robillard D, Sollinger HW (2003) Long-term outcomes in pediatric renal transplant recipients who survive into adulthood. Transplantation 76:1195–1200

    Article  PubMed  Google Scholar 

  69. Ferraris JR, Pasqualini T, Legal S, Sorroche P, Galich AM, Pennisi P, Domene H, Jasper H (2000) Effect of deflazacort versus methylprednisone on growth, body composition, lipid profile, and bone mass after renal transplantation. The Deflazacort Study Group. Pediatr Nephrol 14:682–688

    Google Scholar 

  70. Reusz GS, Szabo AJ, Peter F, Kenesei E, Sallay P, Latta K, Szabo A, Tulassay T (2000) Bone metabolism and mineral density following renal transplantation. Arch Dis Child 83:146–151

    Article  Google Scholar 

  71. Sanchez CP, Salusky IB, Kuizon BD, Ramirez JA, Gales B, Ettenger RB, Goodman WG (1998) Bone disease in children and adolescents undergoing successful renal transplantation. Kidney Int 53:1358–1364

    Article  CAS  PubMed  Google Scholar 

  72. Daniels MW, Wilson DM, Paguntalan HG, Hoffman AR, Bachrach LK (2003) Bone mineral density in pediatric transplant recipients. Transplantation 76:673–678

    Google Scholar 

  73. el-Husseini AA, el-Agroudy AE, Sobh MA, Ghoneim MA (2003) Bone loss in pediatric renal transplant recipients. Nefrologia 23 [Suppl 2]:131–134

  74. Zimakas PJ, Sharma AK, Rodd CJ (2003) Osteopenia and fractures in cystinotic children post renal transplantation. Pediatr Nephrol 18:384–390

    Google Scholar 

  75. Schoenau E, Neu CM, Beck B, Manz F, Rauch F (2002) Bone mineral content per muscle cross-sectional area as an index of the functional muscle-bone unit. J Bone Miner Res 17:1095–1101

    PubMed  Google Scholar 

  76. Ellis EN (2000) Risk factors for bone mineral density loss in pediatric renal transplant patients. Pediatr Transplant 4:146–150

    Google Scholar 

  77. Leonard MB, Bachrach LK (2001) Assessment of bone mineralization following renal transplantation in children: limitations of DXA and the confounding effects of delayed growth and development. Am J Transplant 1:193–196

    Article  Google Scholar 

  78. Braillon PM, Cochat P (1998) Analysis of dual energy X-ray absorptiometry whole body results in children, adolescents and young adults. Appl Radiat Isot 49:623–624

    Article  Google Scholar 

  79. McKay HA, Petit MA, Bailey DA, Wallace WM, Schutz RW, Khan KM (2000) Analysis of proximal femur DXA scans in growing children: comparisons of different protocols for cross-sectional 8-month and 7-year longitudinal data. J Bone Miner Res 15:1181–1188

    Google Scholar 

  80. Ellis KJ, Shypailo RJ, Hardin DS, Perez MD, Motil KJ, Wong WW, Abrams SA (2001) Z score prediction model for assessment of bone mineral content in pediatric diseases. J Bone Miner Res 16:1658–1664

    Google Scholar 

  81. Binkley TL, Specker BL, Wittig TA (2002) Centile curves for bone densitometry measurements in healthy males and females ages 5–22 yr. J Clin Densitom 5:343–353

    Article  Google Scholar 

  82. Hannan WJ, Tothill P, Cowen SJ, Wrate RM (1998) Whole body bone mineral content in healthy children and adolescents. Arch Dis Child 78:396–397

    Google Scholar 

  83. Maynard LM, Guo SS, Chumlea WC, Roche AF, Wisemandle WA, Zeller CM, Towne B, Siervogel RM (1998) Total-body and regional bone mineral content and areal bone mineral density in children aged 8–18 y: the Fels Longitudinal Study. Am J Clin Nutr 68:1111–1117

    Google Scholar 

  84. Sluis IM van der, Ridder MA de, Boot AM, Krenning EP, Muinck Keizer-Schrama SM de (2002) Reference data for bone density and body composition measured with dual energy x ray absorptiometry in white children and young adults. Arch Dis Child 87:341–347

    Article  Google Scholar 

  85. Rio L del, Carrascosa A, Pons F, Gusinye M, Yeste D, Domenech FM (1994) Bone mineral density of the lumbar spine in white Mediterranean Spanish children and adolescents: changes related to age, sex, and puberty. Pediatr Res 35:362–366

    Google Scholar 

  86. Plotkin H, Nunez M, Alvarez Filgueira ML, Zanchetta JR (1996) Lumbar spine bone density in Argentine children. Calcif Tissue Int 58:144–149

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary B. Leonard.

Additional information

This work was presented in part at the IPNA Seventh Symposium on Growth and Development in Children with Chronic Kidney Disease: The Molecular Basis of Skeletal Growth, 1–3 April 2004, Heidelberg. Germany

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leonard, M.B. Assessment of bone mass following renal transplantation in children. Pediatr Nephrol 20, 360–367 (2005). https://doi.org/10.1007/s00467-004-1747-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-004-1747-y

Keywords

Navigation