Skip to main content

Advertisement

Log in

Calcimimetics—fooling the calcium receptor

  • Editorial Commentary
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The cloning and characterization of a calcium-sensing receptor from bovine parathyroid cells has opened up the possibility of modulating the activity of this receptor protein by organic small molecules, either increasing the sensitivity for calcium (calcimimetics) or decreasing the sensitivity (calciolytics), thus suppressing or stimulating parathyroid hormone (PTH) secretion and synthesis, respectively. In primary and secondary hyperparathyroidism, calcimimetics have proven to effectively lower the PTH concentration with minimal side effects. In secondary hyperparathyroidism, a specific advantage is the concomitant lowering of serum calcium and phosphate concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, Sun A, Hediger MA, Lytton J, Hebert SC (1993) Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature 366:575–580

    Article  CAS  PubMed  Google Scholar 

  2. Han S, Tang R, Anderson LK, Woerner TE, Pei ZM (2003) A cell surface receptor mediates extracellular Ca(2+) sensing in guard cells. Nature 425:196–200

    Article  CAS  PubMed  Google Scholar 

  3. Chen RA, Goodman WG (2004) Role of the calcium-sensing receptor in parathyroid gland physiology. Am J Physiol Renal Physiol 286:F1005–F1011

    Article  CAS  PubMed  Google Scholar 

  4. Nearing J, Betka M, Quinn S, Hentschel H, Elger M, Baum M, Bai M, Chattopadyhay N, Brown EM, Hebert SC, Harris HW (2002) Polyvalent cation receptor proteins (CaRs) are salinity sensors in fish. Proc Natl Acad Sci USA 99:9231–9236

    Article  CAS  PubMed  Google Scholar 

  5. MacLeod RJ, Yano S, Chattopadhyay N, Brown EM (2004) Extracellular calcium-sensing receptor transactivates the epidermal growth factor receptor by a triple-membrane-spanning signaling mechanism. Biochem Biophys Res Commun 320:455–460

    Article  CAS  PubMed  Google Scholar 

  6. Riccardi D, Hall AE, Chattopadhyay N, Xu JZ, Brown EM, Hebert SC (1998) Localization of the extracellular Ca2+/polyvalent cation-sensing protein in rat kidney. Am J Physiol 274:F611–F622

    CAS  PubMed  Google Scholar 

  7. Vargas-Poussou R, Huang C, Hulin P, Houillier P, Jeunemaitre X, Paillard M, Planelles G, Dechaux M, Miller RT, Antignac C (2002) Functional characterization of a calcium-sensing receptor mutation in severe autosomal dominant hypocalcemia with a Bartter-like syndrome. J Am Soc Nephrol 13:2259–2266

    CAS  PubMed  Google Scholar 

  8. Watanabe S, Fukumoto S, Chang H, Takeuchi Y, Hasegawa Y, Okazaki R, Chikatsu N, Fujita T (2002) Association between activating mutations of calcium-sensing receptor and Bartter’s syndrome. Lancet 360:692–694

    Article  CAS  PubMed  Google Scholar 

  9. Vezzoli G, Tanini A, Ferrucci L, Soldati L, Bianchin C, Franceschelli F, Malentacchi C, Porfirio B, Adamo D, Terranegra A, Falchetti A, Cusi D, Bianchi G, Brandi ML (2002) Influence of calcium-sensing receptor gene on urinary calcium excretion in stone-forming patients. J Am Soc Nephrol 13:2517–2523

    CAS  PubMed  Google Scholar 

  10. Hebert SC, Cheng S, Geibel J (2004) Functions and roles of the extracellular Ca2+-sensing receptor in the gastrointestinal tract. Cell Calcium 35:239–247

    Article  CAS  PubMed  Google Scholar 

  11. Sheinin Y, Kallay E, Wrba F, Kriwanek S, Peterlik M, Cross HS (2000) Immunocytochemical localization of the extracellular calcium-sensing receptor in normal and malignant human large intestinal mucosa. J Histochem Cytochem 48:595–602

    CAS  PubMed  Google Scholar 

  12. Holt PR, Atillasoy EO, Gilman J, Guss J, Moss SF, Newmark H, Fan K, Yang K, Lipkin M (1998) Modulation of abnormal colonic epithelial cell proliferation and differentiation by low-fat dairy foods: a randomized controlled trial. JAMA 280:1074–1079

    Article  CAS  PubMed  Google Scholar 

  13. Pearce SH, Trump D, Wooding C, Besser GM, Chew SL, Grant DB, Heath DA, Hughes IA, Paterson CR, Whyte MP (1995) Calcium-sensing receptor mutations in familial benign hypercalcemia and neonatal hyperparathyroidism. J Clin Invest 96:2683–2692

    CAS  PubMed  Google Scholar 

  14. Pidasheva S, D’Souza-Li L, Canaff L, Cole DE, Hendy GN (2004) CASRdb: calcium-sensing receptor locus-specific database for mutations causing familial (benign) hypocalciuric hypercalcemia, neonatal severe hyperparathyroidism, and autosomal dominant hypocalcemia. Hum Mutat 24:107–111

    Article  CAS  PubMed  Google Scholar 

  15. Waller S, Kurzawinski T, Spitz L, Thakker R, Cranston T, Pearce S, Cheetham T, Van’t Hoff WG (2004) Neonatal severe hyperparathyroidism: genotype/phenotype correlation and the use of pamidronate as rescue therapy. Eur J Pediatr (in press)

    Google Scholar 

  16. Pallais JC, Kifor O, Chen YB, Slovik D, Brown EM (2004) Acquired hypocalciuric hypercalcemia due to autoantibodies against the calcium-sensing receptor. N Engl J Med 351:362–369

    Article  CAS  PubMed  Google Scholar 

  17. Baron J, Winer KK, Yanovski JA, Cunningham AW, Laue L, Zimmerman D, Cutler GB Jr (1996) Mutations in the Ca(2+)-sensing receptor gene cause autosomal dominant and sporadic hypoparathyroidism. Hum Mol Genet 5:601–606

    Article  CAS  PubMed  Google Scholar 

  18. Nemeth EF, Steffey ME, Hammerland LG, Hung BC, Van Wagenen BC, DelMar EG, Balandrin MF (1998) Calcimimetics with potent and selective activity on the parathyroid calcium receptor. Proc Natl Acad Sci USA 95:4040–4045

    Article  CAS  PubMed  Google Scholar 

  19. Miedlich S, Gama L, Breitwieser GE (2002) Calcium sensing receptor activation by a calcimimetic suggests a link between cooperativity and intracellular calcium oscillations. J Biol Chem 277:49691–49699

    Article  CAS  PubMed  Google Scholar 

  20. Petrel C, Kessler A, Dauban P, Dodd RH, Rognan D, Ruat M (2004) Positive and negative allosteric modulators of the Ca2+-sensing receptor interact within overlapping but not identical binding sites in the transmembrane domain. J Biol Chem 279:18990–18997

    Article  CAS  PubMed  Google Scholar 

  21. Gowen M, Stroup GB, Dodds RA, James IE, Votta BJ, Smith BR, Bhatnagar PK, Lago AM, Callahan JF, DelMar EG, Miller MA, Nemeth EF, Fox J (2000) Antagonizing the parathyroid calcium receptor stimulates parathyroid hormone secretion and bone formation in osteopenic rats. J Clin Invest 105:1595–1604

    CAS  PubMed  Google Scholar 

  22. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, Hodsman AB, Eriksen EF, Ish-Shalom S, Genant HK, Wang O, Mitlak BH (2001) Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344:1434–1441

    Article  CAS  PubMed  Google Scholar 

  23. Goodman WG, Hladik GA, Turner SA, Blaisdell PW, Goodkin DA, Liu W, Barri YM, Cohen RM, Coburn JW (2002) The calcimimetic agent AMG 073 lowers plasma parathyroid hormone levels in hemodialysis patients with secondary hyperparathyroidism. J Am Soc Nephrol 13:1017–1024

    CAS  PubMed  Google Scholar 

  24. Shoback DM, Bilezikian JP, Turner SA, McCary LC, Guo MD, Peacock M (2003) The calcimimetic cinacalcet normalizes serum calcium in subjects with primary hyperparathyroidism. J Clin Endocrinol Metab 88:5644–5649

    Article  CAS  PubMed  Google Scholar 

  25. Quarles LD, Sherrard DJ, Adler S, Rosansky SJ, McCary LC, Liu W, Turner SA, Bushinsky DA (2003) The calcimimetic AMG 073 as a potential treatment for secondary hyperparathyroidism of end-stage renal disease. J Am Soc Nephrol 14:575–583

    CAS  PubMed  Google Scholar 

  26. Fukuda N, Tanaka H, Tominaga Y, Fukagawa M, Kurokawa K, Seino Y (1993) Decreased 1,25-dihydroxyvitamin D3 receptor density is associated with a more severe form of parathyroid hyperplasia in chronic uremic patients. J Clin Invest 92:1436–1443

    CAS  PubMed  Google Scholar 

  27. Ritter CS, Finch JL, Slatopolsky EA, Brown AJ (2001) Parathyroid hyperplasia in uremic rats precedes down-regulation of the calcium receptor. Kidney Int 60:1737–1744

    Article  CAS  PubMed  Google Scholar 

  28. Wada M, Furuya Y, Sakiyama J, Kobayashi N, Miyata S, Ishii H, Nagano N (1997) The calcimimetic compound NPS R-568 suppresses parathyroid cell proliferation in rats with renal insufficiency. Control of parathyroid cell growth via a calcium receptor. J Clin Invest 100:2977–2983

    CAS  PubMed  Google Scholar 

  29. Martin J, Miller G, Colloton M, Shatzen E, Lacey D (2003) Cinacalcet HCl decreases parathyroid hyperplasia in a rodent model of chronic renal insufficiency (abstract). Am Soc Nephrol 14:462a

    Article  Google Scholar 

  30. Goodman WG (2003) Calcimimetics and secondary hyperparathyroidism: rational for use and results from clinical trials. Pediatr Nephrol 18:1206–1210

    Article  PubMed  Google Scholar 

  31. Block GA, Martin KJ, Francisco AL de, Turner SA, Avram MM, Suranyi MG, Hercz G, Cunningham J, Abu-Alfa AK, Messa P, Coyne DW, Locatelli F, Cohen RM, Evenepoel P, Moe SM, Fournier A, Braun J, McCary LC, Zani VJ, Olson KA, Drueke TB, Goodman WG (2004) Cinacalcet for secondary hyperparathyroidism in patients receiving hemodialysis. N Engl J Med 350:1516–1525

    Article  CAS  PubMed  Google Scholar 

  32. Ogata H, Ritz E, Odoni G, Amann K, Orth SR (2003) Beneficial effects of calcimimetics on progression of renal failure and cardiovascular risk factors. J Am Soc Nephrol 14:959–967

    CAS  PubMed  Google Scholar 

  33. Massry SG, Goldstein DA (1979): The search for uremic toxin(s) “X” “X” = PTH. Clin Nephrol 11:181–189

    CAS  PubMed  Google Scholar 

  34. Drueke TB (2004) Calcimimetics versus vitamin D: what are their relative roles? Blood Purif 22:38–43

    Article  PubMed  Google Scholar 

  35. Seidel A, Herrmann P, Klaus G, Mehls O, Schmidt-Gayk H, Ritz E (1993) Kinetics of serum 1,84 iPTH after high dose of calcitriol in uremic patients. Clin Nephrol 39:210–213

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eberhard Ritz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritz, E. Calcimimetics—fooling the calcium receptor. Pediatr Nephrol 20, 15–18 (2005). https://doi.org/10.1007/s00467-004-1671-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-004-1671-1

Keywords

Navigation