Skip to main content

Advertisement

Log in

A 20-year history of childhood HIV-associated nephropathy

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

In 1984, physicians in New York and Miami reported HIV-infected adult patients with heavy proteinuria and rapid progression to end-stage renal disease. These patients showed large edematous kidneys with a combination of focal segmental glomerulosclerosis (FSGS) and tubulointerstitial lesions. This renal syndrome, named HIV-associated nephropathy (HIVAN), was found predominantly in African Americans. Subsequent studies confirmed the presence of HIVAN in children, who frequently develop nephrotic syndrome in association with FSGS and/or mesangial hyperplasia with microcystic tubular dilatation. Since then, substantial progress has been made in our understanding of the etiology and pathogenesis of HIVAN. This article reviews 20 years of research into the pathogenesis of HIVAN and discusses how these concepts could be applied to the treatment of children with HIVAN. HIV-1 infection plays a direct role in the pathogenesis of childhood HIVAN, at least partially by affecting the growth and differentiation of glomerular and tubular epithelial cells and enhancing the renal recruitment of infiltrating mononuclear cells and cytokines. An up-regulation of renal heparan sulfate proteoglycans seems to play a relevant role in this process, by increasing the recruitment of heparin-binding growth factors (i.e., FGF-2), chemokines, HIV-infected cells, and viral proteins (i.e., gp120, Tat). These changes enhance the infectivity of HIV-1 in the kidney and induce injury and proliferation of intrinsic renal cells. Highly active anti-retroviral therapy (HAART) appears to be the most promising treatment to prevent the progression of childhood HIVAN. Hopefully, in the near future, better education, prevention, and treatment programs will lead to the eradication of this fatal childhood disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pneumocystis pneumonia—Los Angeles (1981) Morb Mortal Wkly. Rep 30:250–252

    Google Scholar 

  2. Fauci AS (1999) The AIDS epidemic—considerations for the 21st century. N Engl J Med 341:1046–1050

    Article  CAS  PubMed  Google Scholar 

  3. Barre-Sinoussi F, Chermann JC, Rey F, Nugeyre MT, Chamaret S, Gruest J, Dauguet C, Axler-Blin C, Vezinet-Brun F, Rouzioux C, Rozembaum W, Montagnier L (1983) Isolation of a T lymphtropic retrovirus from at patient at risk for acquired immune deficiency (AIDS). Science 220:868–871

    CAS  PubMed  Google Scholar 

  4. Gallo RC (2002) Human retrovirus after 20 years: a perspective from the past and prospects for their future control. Immunol Rev 185:236–265

    Article  CAS  PubMed  Google Scholar 

  5. Mitsuya H, Weinhold KJ, Furman PA, St Clair MH, Lehrman SN, Gallo RC, Bolognesi D, Barry DW, Broders S (1985) 3’-Azido-3’-deoxytimidine (BW A509U): an antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphadenopathy-associated virus in vitro. Proc Natl Acad Sci USA 82:7096–7100

    CAS  PubMed  Google Scholar 

  6. Oleske J, Minnefor A, Cooper R, Thomas K, Cruz A dela, Ahdieh H, Guerrero I, Joshi VV, Deposito F. (1983) Immune deficiency syndrome in children. JAMA 249:2345–2349

    Article  CAS  PubMed  Google Scholar 

  7. Rubinstein A, Sicklick M, Gupta A, Bernstein L, Klein N, Rubisntein E, Spigland I, Fruchter L, Litman N, Lee H, Hollander M (1983) Acquired immunodeficiency with reversed T4/T8 ratios in infants born to promiscuous and drug-addicted mothers. JAMA 249:2350–2356

    Article  CAS  PubMed  Google Scholar 

  8. Cowan MJ, Hellmann D, Chudwin D, Wara DW, Chang RS, Ammann AJ (1984) Maternal transmission of acquired immune deficiency syndrome. Pediatrics 73:382–386

    CAS  PubMed  Google Scholar 

  9. Lindegren ML, Steinberg S, Byers RH (2000) Epidemiology of HIV/AIDS in children. Pediatr Clin North Am 47:1–38

    CAS  PubMed  Google Scholar 

  10. Centers for Disease Control and Prevention (2001) HIV/AIDS Surv Rep 13:1–44

    Google Scholar 

  11. The Global HIV and AIDS Epidemic (2001) Morb Mortal Wkly 50:439

    Google Scholar 

  12. Connor E, Gupta S, Joshi V, DiCarlo F, Offenberger J, Minnefor A, Uy C, Oleske J, Ende N (1988) Acquired immunodeficiency syndrome-associated renal disease in children. J Pediatr 113:39–44

    CAS  PubMed  Google Scholar 

  13. Strauss J, Abitol C, Zilleruelo G, Scott G, Paredes A, Malaga S, Montane B, Mitchell C, Parks W, Pardo V (1989) Renal disease in children with acquired immunodeficiency syndrome. N Engl J Med 321:625–630

    CAS  PubMed  Google Scholar 

  14. Tarshish P (1991) Approach to the diagnosis and management of HIV-associated nephropathy. J Pediatr 119:S50–S56

    CAS  PubMed  Google Scholar 

  15. Joshi VV (1991) Pathology of childhood AIDS. Pediatr Clin North Am 84:11–13

    Google Scholar 

  16. Ingulli E, Tejani A, Fikrig S, Nicastri A, Chen CK, Pomrantz A (1991) Nephrotic syndrome associated with acquired immunodeficiency syndrome in children. J Pediatr 119:710–716

    CAS  PubMed  Google Scholar 

  17. Turner ME, Kher K, Rakussan T, D’Angelo LM, Kapur S, Selby D, Ray PE (1997) Atypical hemolytic-uremic syndrome in HIV-1 infected children. Pediatr Nephrol 11:161–163

    Article  CAS  PubMed  Google Scholar 

  18. Ray PE, Rakusan T, Loechelt BJ, Selby DM, Liu X-H, Chandra RS (1998) Human immunodeficiency virus (HIV)-associated nephropathy in children from the Washington, D.C. area: 12 years’ experience. Semin Nephrol 18:396–405

    CAS  PubMed  Google Scholar 

  19. Rao TKS, Friedman EA, Nicastri AD (1987) The types of renal disease in the acquired immunodeficiency syndrome. N Engl J Med 316:1062–1068

    CAS  PubMed  Google Scholar 

  20. Stine GJ (2002) AIDS update. An annual overview of acquired immune deficiency syndrome. Biological characteristics of the AIDS virus. Prentice Hall, Upper Saddle River, New Jersey, pp 52–71

  21. Stevenson (2003) HIV pathogenesis. Nat Med 9:853–860

    Article  CAS  PubMed  Google Scholar 

  22. Shirai A, Klinman DM (1993) Immunization with recombinant gp160 prolongs the survival of HIV-transgenic mice. AIDS Res Hum Retroviruses 9:979–983

    CAS  PubMed  Google Scholar 

  23. Kopp JB, Barisoni L (2002) Modulation of podocytes phenotype in collapsing glomerulopathy. Microsc Res Tech 57:254–262

    Article  PubMed  Google Scholar 

  24. Conaldi PG, Botelli A, Baj A, Serra C, Fiore L, Federico G, Bussolati B, Camussi G (2002) Human immunodeficiency virus-1 Tat induces hyperproliferation and dysregulation of renal glomerular epithelial cells. Am J Pathol 161:53–61

    CAS  PubMed  Google Scholar 

  25. Klotman PE, Ross MJ (2002). Recent progress in HIV-associated nephropathy. J Am Soc Nephrol 13:2997–3004

    PubMed  Google Scholar 

  26. Dickie P, Felser J, Eckhaus ME, Bryant J, Silver J, Marinos N, Notkins AL (1991) HIV-associated nephropathy in transgenic mice expressing HIV-I genes. Virology 185:109–119

    Article  CAS  PubMed  Google Scholar 

  27. Kopp JB, Klotman ME, Adler SH, Bruggeman L, Dickie P, Bryant J, Notkins A, Klotman PE (1992) Progressive glomerulosclerosis and enhanced renal accumulation of basement membrane components in mice transgenic for human immunodeficiency virus type 1 genes. Proc Natl Acad Sci USA 89:1577–1581

    CAS  PubMed  Google Scholar 

  28. Reid W, Sadowska M, Denaro F, Rao S, Foulke Jr J, Hayes N, Jones O, Doodnauth D, Davis H, Sill A, O’Driscoll P, Huso D, Fouts T, Lewis G, Hill M, Kamin-Lewis R, Wei C, Ray PE, Gallo RC, Reitz M, Bryant J (2001) An HIV-1 transgenic rat that develops HIV-related pathology and immunology dysfunction. Proc Natl Acad Sci USA 98:9271–9276

    Article  CAS  PubMed  Google Scholar 

  29. Ray PE, Liu X-L, Robinson RL, Reid W, Xu L, Owens JW, Jones OD, Denaro F, Davis HG, BryantJL (2003) A novel HIV-1 transgenic rat model of childhood HIV-1 associated nephropathy. Kidney Int 63:2242–2253

    Article  PubMed  Google Scholar 

  30. Rao TK, Filippone EJ, Nicastri AD, Landesman SH, Frank S, Chen CK, Friedman EA (1984) Associated focal and segmental glomerulosclerosis in the acquired immunodeficiency syndrome. N Engl J Med 310:669–673

    CAS  PubMed  Google Scholar 

  31. Pardo V, Aldana M, Colton RM, Fischl MA, Jaffe D, Moskowitz L, Hensley T, Bourgoignie JJ (1984) Glomerular lesions in the acquired immunodeficiency syndrome. Ann Intern Med 101:429–434

    CAS  PubMed  Google Scholar 

  32. Gardenswartz MH, Lerner CW, Seligson GR, Zabetakis PM, Rotterdam H, Tapper ML, Michelis MF, Bruno MS (1984) Renal disease in patients with AIDS: a clinicopathological study. Clin Nephrol 21:197–204

    CAS  PubMed  Google Scholar 

  33. Cohen AH, Nast CC (1988) HIV-associated nephropathy: a unique combined glomerular, tubular and interstitial lesion. Mod Pathol1:87–97

    Google Scholar 

  34. D’Agatii V, Appel GB (1997) HIV infection and the kidney. J Am Soc Nephrol 8:138–152

    PubMed  Google Scholar 

  35. Pardo V, Meneses R, Ossa L, Jaffe DJ, Strauss J, Roth D, Bourgoignie JJ (1987) AIDS-related glomerulopathy. Occurrence in specific risk groups. Kidney Int 31:1167–1173

    CAS  PubMed  Google Scholar 

  36. Kopp JB, Winkler C (2003) HIV-associated nephropathy in African Americans. Kidney Int 83:S43–S49

    CAS  Google Scholar 

  37. Freedman BI, Soucie JM, Stone SM, Pegram S (1999) Familial clustering of end stage renal disease in blacks with HIV-associated nephropathy. Am J Kidney Dis 34:254–258

    CAS  PubMed  Google Scholar 

  38. Ray PE, Liu X-H, Xu L, Rakusan T (1999) Accumulation of bFGF in children with HIV-1 associated hemolytic uremic syndrome. Pediatr Nephrol 13:586–593

    Article  CAS  PubMed  Google Scholar 

  39. Ray PE, Liu XH, Henry D, Dye L, Xu L, Orenstein JM, Schuztbank TE (1998) Infection of human primary renal epithelial cells with HIV-1 from children with HIV-associated nephropathy. Kidney Int 53:1217–1229

    Article  CAS  PubMed  Google Scholar 

  40. Scheel PJ, Farzadegan H, Ford D, Malan M, Watson A (1995) Recovery of human immunodeficiency virus from peritoneal dialyis effluent. J Am Soc Nephrol 5:1926–1929

    PubMed  Google Scholar 

  41. Ray PE, Bruggeman L, Weeks B, Kopp J, Bryant J, Owens, Notkins A, Klotman PE (1994) Role of bFGF and its low affinity receptors in the pathogenesis of HIV-associated nephropathy in transgenic mice. Kidney Int 46:759–772

    CAS  PubMed  Google Scholar 

  42. Liu X-H, Achim A, Xu L, Wellstein A, Ray PE (2001) Up-regulation of a fibroblast growth factor binding protein in children with renal diseases. Kidney Int 59:1850–1858

    Article  PubMed  Google Scholar 

  43. Ray PE (1999) Looking into the past and future of HIV-nephropathy. Kidney Int 55:1123–1124

    Article  CAS  PubMed  Google Scholar 

  44. Bruggeman LA, Dikman S, Meng C, Quaggin SE, Coffman TM, Klotman PE (1997) Nephropathy in human immunodeficiency virus-1 transgenic mice is due to renal transgene expression. J Clin Invest 100:84–92

    CAS  PubMed  Google Scholar 

  45. Schwartz EJ, Cara A, Snoeck H, Ross MD, Sunamoto M, Reiser J, Mundel P, Klotman PE (2001) Human immunodeficiency virus-1 induces loss of contact inhibition in podocytes. J Am Soc Nephrol 12:1677–1684

    CAS  PubMed  Google Scholar 

  46. Barisoni L, Bruggeman LA, Mundel P, D’Agati V, Klotman PE (2000) HIV-1 induces renal epithelial dedifferentiation in a transgenic model of HIV-associated nephropathy. Kidney Int 58:173–181

    Article  CAS  PubMed  Google Scholar 

  47. Barisoni L, Kriz W, Mundel P, D’ Agati V (1999) The dysregulated podocyte phenotype: a novel concept in the pathogenesis of collapsing idiopathic focal segmental glomerolusclerosis and HIV-associated nephropathy. J Am Soc Nephrol 10:51–61

    Article  CAS  PubMed  Google Scholar 

  48. Barisoni L, Mokrzycki M, Sablay L, Nagata M, Yamase H, Mundel P (2000) Podocyte cell cycle regulation and proliferation in collapsing glomerulopathies. Kidney Int 58:137–143

    Article  CAS  PubMed  Google Scholar 

  49. Shankland SJ, Eitner F, Hudkins KL, GoodPaster T, D’Agati V, Alpers C (2000) Differential expression of cyclin-dependent kinase inhibitors in human glomerular disease: role in podocyte proliferation and maturation. Kidney Int 58:674–683

    Article  CAS  PubMed  Google Scholar 

  50. Nelson PJ, Gelman IH, Klotman PE (2001) Suppression of HIV-1 expression by inhibitors of cyclin-dependent kinases promotes differentiation of infected podocytes. J Am Soc Nephrol 12:2827–2831

    CAS  PubMed  Google Scholar 

  51. Kimmel PL, Barisoni L, Kopp JB (2003) Pathogenesis and treatment of HIV-associated renal disease: lessons from clinical and animal studies, molecular pathologic correlations and genetic investigations. Ann Intern Med 139:214–226

    CAS  PubMed  Google Scholar 

  52. Peterman AT, Pippin J, Hiromura K, Monkawa T, Durvasula R, Couser WG, Kopp J, Shankland SJ (2003) Mitotic cell cycle proteins increase in podocytes despite lack of proliferation. Kidney Int 63:113–122

    Article  PubMed  Google Scholar 

  53. Green DF, Resnick L, Bourgoignie JJ (1992) HIV infects glomerular endothelial and mesangial but not epithelial cells in vitro. Kidney Int 41:956–960

    CAS  PubMed  Google Scholar 

  54. Tokizawa S, Shimizu N, Hui-Yu L, Deyu F, Haraguchi Y, Oite T, Hoshino H (2000) Infection of mesangial cell with HIV and SIV: identification of GPR1 as a coreceptor. Kidney Int 58:607–617

    Article  CAS  PubMed  Google Scholar 

  55. Conaldi PG, Bottelli A, Wade-Evans A, Biancone L, Baj A, Cantaluppi V, Serra C, Dolei A, Toniolo A, Camussi G (2000) HIV-persistent infection and cytokine induction in mesangial cells: a potential mechanism for HIV-associated glomerulosclerosis. AIDS 14:2045–2047

    Article  CAS  PubMed  Google Scholar 

  56. diBelgiojoso GB, Genderini A, Vago L, Parravicini C, Bertoli S, Landriani N (1990) Absence of HIV antigens in renal tissue from patients with HIV-associated nephropathy. Nephrol Dial Transplant 5:489–492

    PubMed  Google Scholar 

  57. Alpers CE, McClure J, Bursten SL (1992) Human mesangial cells are resistant to productive infection by multiple strains of human immunodeficiency virus types 1 and 2. Am J Kidney Dis 19:126–130

    CAS  PubMed  Google Scholar 

  58. Eitner F, Cui Y, Hudkins KL, Stokes MB, Segerer S, Mack M, Lewis PL, Abraham AA, Schlondorff D, Gallo G, Kimmel PL, Alpers CE (2000) Chemokine receptor CCR5 and CXCR4 expression in HIV-associated kidney disease. J Am Soc Nephrol 11:856–867

    CAS  Google Scholar 

  59. Tinkle BT, Ngo L, Luciw PA, Maciag T, Jay G (1977) HIV-associated vasculopathy in transgenic mice. J Virol 71:4809–4814

    Google Scholar 

  60. Tinkle BT, Ueda H, Ngo L, Luciw PA, Shaw K, Rosen CA, Jay G (1997) Transgenic dissection of HIV genes involved in lymphoid depletion. J Clin Invest 100:32–39

    CAS  PubMed  Google Scholar 

  61. Striker LJ, Peten EP, Elliot SJ, Doi T, Striker G (1991) Biology of disease. Mesangial cell turnover: effect of heparin and peptide growth factors. Lab Invest 64:446–456

    CAS  PubMed  Google Scholar 

  62. Cohen AH, Sun NCJ, Shapshak P, Imagawa DT (1989) Demonstration of human immunodeficiency virus in renal epithelium in HIV-associated nephropathy. Mod Pathol 1:87–97

    Google Scholar 

  63. Kimmel PL, Ferreira-Centeno A, Farkas-Szallazi T, Abraham AA, Garret CT (1993) Viral DNA in microdissected renal biopsy tissue from HIV infected patients with nephrotic syndrome. Kidney Int 43:373–378

    Google Scholar 

  64. Conaldi PG, Biancone L, Botelli A, Wasde-Evans A, Racusen LC, Boccellino M, Orlandi V, Serra C, Camussi G, Toniolo A (1998) HIV-1 kills renal tubular epithelial cells in vitro by triggering an apoptotic pathway involving caspase activation and Fas upregulation. J Clin Invest 102:2041–2049

    CAS  PubMed  Google Scholar 

  65. Eitener F, Cui Y, Hudkins KL, Anderson DM, Schmidt A, Morton WR, Alpers CE (1998) Chemokine receptor (CCR5) expression in human kidneys and in the HIV infected macaque. Kidney Int 54:1945–1954

    Article  PubMed  Google Scholar 

  66. Bourinbaiar AS, Phillips DM (1991) Transmission of human immunodeficiency virus from monocytes to epithelial. J Acquir Immune Defic Syndr 4:56–63

    CAS  PubMed  Google Scholar 

  67. Bomsel M (1997) Transcytosis of infectious human immunodeficiency virus across a tight human epithelial cell line barrier. Nat Med 3:42–47

    CAS  PubMed  Google Scholar 

  68. Marechal V, Prevost MC, Petit C, Perret E, Heard JM, Schwartz O (2001) Human immunodeficiency virus type 1 entry into macrophages mediated macropinocytosis. J Virol 75:11166–11177

    Article  CAS  PubMed  Google Scholar 

  69. O’ Donnell MP, Chao CC, Gekker G, Modi KS, Kasiske BL, Keane WF (1998) Renal cell cytokine production stimulates HIV-1 expression in chronically HIV-infected monocytes. Kidney Int 53:593–597

    Article  PubMed  Google Scholar 

  70. Mack M, Kleinschmidt A, Bruhl H, Klier C, Nelson PJ, Cihak J, Plachy J, Stangassinger M, Erfle V, Schlondoerff D (2000) Transfer of the chemokine receptor CCR5 between cells by membrane-derived microparticles: a mechanism for cellular human immunodeficiency virus 1 infection. Nat Med 6:769–775

    Article  CAS  PubMed  Google Scholar 

  71. Meng G, Wei X, Wu X, Sellers MT, Decker JM, Moldoveanu Z, Orenstein JM, Graham MF, Kappes JC, Mestecky J, Shaw GM, Smith PD (2002) Primary intestinal epithelial cells selectively transfer R5 HIV-1 to CCR5+ cells. Nat Med 8:150–156

    Article  CAS  PubMed  Google Scholar 

  72. Bomsel M, David V (2002) Mucosal gatekeepers: selecting HIV viruses for early infection. Nat Med 8:114–116

    Article  CAS  PubMed  Google Scholar 

  73. Liu X-H, Lingwood CA, Ray PE (1999) Recruitment of renal tubular epithelial cells expressing verotoxin-1 (Stx-1) receptors in HIV-1 transgenic mice with renal disease. Kidney Int 55:554–561

    Article  CAS  PubMed  Google Scholar 

  74. Puri A, Hug P, Jernigan K, Bkarchi H, Kim Y, Hamilton J, Wiels J, Murrray GJ, Brady RO, Blumenthal R (1998). The neutral glycosphingolipid globotriasylceramide promotes fusion mediated by CD4-dependent CXCR4-utilizing HIV-1 envelope glycoprotein. Proc Natl Acad Sci USA 95:14435–14440

    Article  CAS  PubMed  Google Scholar 

  75. Hammache D, Yahi N, Maresca M, Pieroni G, Fantini J (1999) Human erythrocyte glycosphingolipids as alternative co-factors for human immunodeficiency virus type 1 entry: evidence for CD4 induced interactions between HIV-1 gp120 and reconstituted membrane microdomains of glycosphingolipids (Gb3 and GM3). J Virol 73:5244–5248

    CAS  PubMed  Google Scholar 

  76. Stephens EB, Tain C, Li Z, Narayan O, Gattone FH 2nd (2000) Rhesus macaques infected with macrophage-tropic simian immunodeficiency virus (SIVmacR71/17E) exhibit extensive focal segmental and global glomeruosclerosis. J Virol 72:8820–8832

    Google Scholar 

  77. Bruggeman LA, Ross MD, Tanji N, Cara A, Dikman S, Gordon RE, Burns GC, D’Agati V, Winston JA, Klotman ME, Klotman PE (2000) Renal epithelium is a previously unrecognized site of HIV-infection. J Am Soc Nephrol 11:2079–2087

    CAS  PubMed  Google Scholar 

  78. Marras D, Bruggeman LA, Gao F, Tanji N, Mansukhani MM, Cara A, Ross MD, Gusella GL, Benson G, D’Agati V, Hahn BH, Klotman ME, Klotman PE (2002) Replication and compartmentalization of HIV-1 in kidney epithelium of patients with HIV-1 associated nephropathy. Nat Med 5:522–526

    Article  Google Scholar 

  79. Winston JA, Bruggeman LA, Ross MD, Jacobson M, Ross L, D’Agati VD, Klotman PE, Klotman ME (2001). Nephropathy and establishment of a renal reservoir of HIV type 1 during primary infection. N Engl J Med 344:1979–1984

    Article  CAS  PubMed  Google Scholar 

  80. Husain M, Gussella GL, Klotman ME, Gelman IH, Ross MD, Schwartz EJ, Cara A, Klotman PE (2002) HIV-1 Nef induces proliferation and anchorage-independent growth in podocytes. J Am Soc Nephrol 13:1806–1815

    CAS  PubMed  Google Scholar 

  81. Dickie P (2000) Nef modulation of HIV type 1 gene expression and cytopathicity in tissues of HIV transgenic mice. AIDS Res Hum Retroviruses 16:777–790

    Article  CAS  PubMed  Google Scholar 

  82. Kajiyama W, Kopp JB, Marinos NJ, Notkins PE, Dickie P (2000) Glomerulosclerosis and viral gene expression in HIV-transgenic mice: role of nef. Kidney Int 58:1148–1159

    Article  CAS  PubMed  Google Scholar 

  83. Swingler S, Mann A, Jacque J-M, Brichachek B, Sasseville VG, Williams K, Lackner AA, Janoff EN, Wang R, Fisher D, Stevenson M (1999) HIV-1 Nef mediates lymphocyte chemotaxis and activation by infected macrophages. Nat Med 5:997–1003

    Article  CAS  PubMed  Google Scholar 

  84. Hanna Z, Kay DG, Rebai N, Guimond A, Jothy S, Jolicoeur P (1998) Nef harbors a major determinant of pathogenicity for an AIDS-like disease induced by HIV-1 in transgenic mice. Cell 95:163–175

    Article  CAS  PubMed  Google Scholar 

  85. Bodi I, Kimmel PL, Abraham AA, Svetkey LP, Klotman PE, Kopp JB. (1997) Renal TGF-β 1 in HIV-associated kidney diseases. Kidney Int 51:1568–1577

    CAS  PubMed  Google Scholar 

  86. Yamamoto T, Noble NA, Miller DE, Gold LL, Miller DE, Gold LL, Hishida A, Nagase M, Cohen AH, Border WY (1999) Increased levels of transforming growth factor-β in HIV-associated nephropathy. Kidney Int 55:579–592

    Article  CAS  PubMed  Google Scholar 

  87. Kopp JB, Factor VM, Mozes M, Nagy P, Sanderson N, Bottinger EP, Klotman PE, Thorgeirsson SS (1996) Transgenic mice with increased levels of TGF-beta 1 develop progressive renal disease. Lab Invest 74:991–1003

    CAS  PubMed  Google Scholar 

  88. Zietz C, Hotz B, Sturz M, Rauch E, Penning R, Lohrs U (1996) Aortic endothelium in HIV-1 infection. Chronic injury, activation and increased leukocyte adherence. Am J Pathol 149:1887–1898

    CAS  PubMed  Google Scholar 

  89. Ascheri G, Sgadari C, Bugarini R, Bogner J, Schatz O, Ensoli B, Sturzl M (2001). Serum concentration of fibroblast growth factor 2 are increased in HIV-1 type-infected patients and inversely correlated to survival probability. AIDS Res Hum Retroviruses 17:1035–1039

    Article  PubMed  Google Scholar 

  90. Wolf K, Tsakiris DA, Weber R, Erb P, Battegay M, for the Swiss HIV Cohort Study (2002). Antiretroviral therapy reduces markers of endothelial and coagulation activation in patients infected with human immunodeficiency virus type 1. J Infect Dis 185:456–462

    Article  CAS  PubMed  Google Scholar 

  91. Lindner V, Reidy MA (1991) Proliferation of smooth muscle cells after vascular injury is inhibited by an antibody against basic fibroblast growth factor. Proc Natl Acad Sci USA 88:3739–3743

    CAS  PubMed  Google Scholar 

  92. Linder V, Olson NE, Clowes AW, Reidy MA (1992) Inhibition of smooth muscle cell proliferation in injured rat arteries. J Clin Invest 90:2044–2049

    PubMed  Google Scholar 

  93. Sasaki T, Jyo Y, Tanda N, Kawakami Y, Nohno T, Tamai H, Osawa G (1999) Changes in glomerular epithelial cells induced by FGF-2 and FGF-2 neutralizing antibody in puromycin aminonucleoside nephropathy. Kidney Int 51:301–309

    Google Scholar 

  94. Mazue G, Newman A, Scampini G, Torre PD, Hard GC, Iatropoulos MJ, Williams GM, Bagnasco (1993) The histopathology of kidneys changes in rats and monkeys following intravenous administration of massive doses of FCE 26184, human basic fibroblast growth factor. Toxicol Pathol 21:490–501

    CAS  PubMed  Google Scholar 

  95. Kriz W, Hahnel B, Rosener S, Elger M (1995) Long term treatment of rats with FGF-2 results in focal segmental glomerulosclerosis. Kidney Int 48:1435–1450

    CAS  PubMed  Google Scholar 

  96. Floege J, Kriz W, Schulze M, Susani M, Kerjaschki D, Mooney A, Couser WG, Koch KM (1995) Basic fibroblast growth factor augments podocyte injury and induces glomerulosclerosis in rats with experimental membranous nephropathy. J Clin Invest 96:2809–2819

    CAS  PubMed  Google Scholar 

  97. Rennke HG, Klein PS (1989) Pathogenesis and significance of nonprimary focal and segmental glomerulosclerosis. Am J Kidney Dis 13:443–456

    CAS  PubMed  Google Scholar 

  98. Tovo PA (2000) Highly active antiretroviral therapy inhibits cytokine production in HIV-uninfected subjects. AIDS 14:743–744

    Article  CAS  PubMed  Google Scholar 

  99. Lama G, Luongo I, Tirino G, Borreillo A, Carangio C, Salsano ME (2002) T-lymphocyte populations and cytokines in childhood nephrotic syndrome. Am J Kidney Dis 39:958–965

    Article  CAS  PubMed  Google Scholar 

  100. Gospodarowicz D, Ferrara N, Schweigerer L, Neufeld G (1987) Structural characterization and biological functions of fibroblast growth factor. Endocr Rev 8:95–114

    CAS  PubMed  Google Scholar 

  101. Powers CJ, McLeskey SW, Wellstein A (2000) Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer 7:165–197

    CAS  PubMed  Google Scholar 

  102. Ku PT, D’Amore PA (1995) Regulation of basic fibroblast growth factor (bFGF) gene expression and protein expression following its release from sublethally injured endothelial cells. J Cell Biochem 58:328–343

    CAS  PubMed  Google Scholar 

  103. Ray PE, Acheson D, Chitrakar R, Cnaan A, Gibbs K, Hirschman GH, Christen E, Trachtman and the Investigators of the Hemolytic Uremic Syndrome-Synsorb PK Multicenter Clinical Trial (2002) Basic fibroblast growth factor among children with diarrhea-associated hemolytic uremic syndrome. J Am Soc Nephrol 13:699–707

    CAS  PubMed  Google Scholar 

  104. Cozzolino F, Torcia M, Lucibello M, Morbidelli L, Ziche M, Platt J, Fabiani S, Stern D (1993) Interferon-alpha and interleukin 2 synergistically enhance basic fibroblast growth factor synthesis and induce release, promoting endothelial cell growth. J Clin Invest 91:2504–2512

    CAS  PubMed  Google Scholar 

  105. Samaniego F, Markham PD, Gallo RC, Ensoli B (1995) Inflammatory cytokines induce AIDS-Kaposi’s sarcoma-derived spindle cells to produce and release basic fibroblast growth factor and enhance Kaposi’s sarcoma-like lesion formation in nude mice. J Immunol 154:3582–3592

    CAS  PubMed  Google Scholar 

  106. Flaumenhaft R, Moscatelli D, Saksela O, Rifkin D (1989) Role of extracellular matrix in the action of basic fibroblast growth factor: matrix as a source of growth factor for long term stimulation of plasminogen activator production and DNA synthesis. J Cell Physiol 140:75–81

    CAS  PubMed  Google Scholar 

  107. Klagsbrun M, Baird A (1991) A dual receptor system is required for basic fibroblast growth factor activity. Cell 67:229–231

    Article  CAS  PubMed  Google Scholar 

  108. Ruoslahti E, Yamaguchi Y (1991) Proteoglycans as modulators of growth factor activities. Cell 64:867–869

    Article  CAS  PubMed  Google Scholar 

  109. Kriz W (1996) Progressive renal failure—inability of podocytes to replicate and the consequences for the development of glomerulosclerosis. Nephrol Dial Transplant 11:1738–1742

    CAS  Google Scholar 

  110. Sasaki T, Hatta H, Osawa G (1999) Cytokines and podocyte injury: the mechanism of fibroblast growth factor-2 induced podocyte injury. Nephrol Dial Transplant 14 [Suppl 1]:33–34

    Google Scholar 

  111. Floege J, Eng E, Linder V, Alpers CE, Young BA, Reidy MA, Johnson RJ (1992) Rat glomerular mesangial cells synthesize basic fibroblast growth factor. Release, upregulated synthesis and mitogenicity in mesangial proliferative glomerulonephritis. J Clin Invest 90:2362–2369

    CAS  PubMed  Google Scholar 

  112. Floege J, Eng E, Young BA, Alpers C, Barret TB, Bowen-Pope DF, Johnson RJ (1993) Infusion of platelet-derived growth factor or fibroblast growth factor induces selective glomerular mesangial cell proliferation and matrix accumulation in rats. J Clin Invest 92:2952–2962

    CAS  PubMed  Google Scholar 

  113. Naparsteck Y, Cohen IR, Fuks Z, Vlodavsky I (1984) Activated T lymphocytes produce a matrix-degrading heparan sulphate endoglycosidase. Nature 252:241–244

    Google Scholar 

  114. Bashkin P, Doctrow S, Klagsbrun M, Svahn CM, Folkman J, Vlodavsky I (1989) Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules. Biochemistry 28:1737–1743

    CAS  PubMed  Google Scholar 

  115. Ensoli B, Gendelman R, Markham, Fiorelli V, Colombinin S, Raffeld M, Cafaro A, Chang H-K, Brady JN, Gallo RC (1994) Synergy between basic fibroblast growth factor and HIV-1 Tat protein in induction of Kaposi’s sarcoma. Nature 371:674–689

    Article  CAS  PubMed  Google Scholar 

  116. Mohan R, Sivak J, Ashton P, Russo LA, Pham BQ, Kasahara N, Raizman MB, Fini ME (2000) Circuminoids inhibit the angiogenic response stimulated by fibroblast growth factor-2, including expression of matrix metalloproteinase gelatinase B. J Biol Chem 275:10405–10412

    Article  CAS  PubMed  Google Scholar 

  117. Wu D, Kan M, Sato GH, Okamoto T, Sato JD (1991) Characterization and molecular cloning of a putative binding protein for heparin-binding growth factors. J Biol Chem 288:16778–16785

    Google Scholar 

  118. Czubayko F, Smith RV, Chung HC, Wellstein A (1994) Tumor growth and angiogenesis induced by a secreted binding protein for fibroblast growth factor. J Biol Chem 269:28243–28248

    CAS  PubMed  Google Scholar 

  119. Czubayko F, Liaudet-Coopman ED, Aigner A, Tuveson AT, Berchem GJ, Wellstein A (1997) A secreted FGF-binding protein can serve as the angiogenic switch in human cancer. Nat Med 3:1137–1140

    CAS  PubMed  Google Scholar 

  120. Gupta GK, MiIner L, Linshaw MA, McCauley RG, Connors S, Folkman J, Bianchi DW (2000) Urinary basic fibroblast growth factor: a noninvasive marker of progressive cystic renal disease in a child. Am J Med Genet 17:132–135

    Article  Google Scholar 

  121. Morita H, Shinzato T, David G, Mizutani A, Habuchi H, Fujita Y, Ito M, Asai J, Maeda K, Kimata K (1984) Basic fibroblast growth factor-binding domain of heparan sulfate in the human glomerulosclerosis and renal tubulointerstitial fibrosis. Lab Invest 71:528–535

    Google Scholar 

  122. Clyton A, Thomas J, Thomas GJ, Davies M, Steadman R (2001) Cell surface heparan sulfate proteoglycans control the response of renal interstitial fibroblasts to fibroblast growth factor-2. Kidney Int 59:2084–2094

    Article  PubMed  Google Scholar 

  123. Patel M, Yanagishita M, Roderiquez G, Bou-Habib DC, Oravecz T, Hascall VC, Norcross MA (1993) Cell-surface heparan sulfate proteoglycans mediates HIV-1 infection of T-cell lines. AIDS Res Hum Retroviruses 9:167–174

    CAS  PubMed  Google Scholar 

  124. Ibrahim J, Griffin P, Coombe DR, Rider CC, James W (1999) Cell-surface heparan sulfate facilitates human immunodeficiency virus type 1 entry into some cells lines but not primary lymphocytes. Virus Res 60:159–169

    Article  CAS  PubMed  Google Scholar 

  125. Mondor I, Ugolini S, Sattentau QJ (1998) Human immunodeficiency virus type 1 attachment to HeLa CD4 cells is CD independent and gp120 dependent and requires cell surface heparans. J Virol 72:3623–3634

    CAS  PubMed  Google Scholar 

  126. Roderiquez G, Oravecz T, Yanagishita M, Bou-Habbi DC, Mostowski H, Norcross MA (1995) Mediation of human immunodeficiency virus-type 1 binding by interaction of cell surface heparan sulfate proteoglycans with the V3 region of envelope gp120-gp41. J Virol 69:2233–2239

    CAS  PubMed  Google Scholar 

  127. Moulard M, Lortat-Jacob H, Mondor I, Roca G, Wyatt R, Sodroski J, Zhao, Olson W, Kwong PD, Sattentau QJ (2000) Selective interactions of polyanions with basic surfaces on HIV-1 gp120. J Virol 74:1948–1960

    Article  CAS  PubMed  Google Scholar 

  128. Mitusya H, Looney DJ, Kuno S, Ueno R, Wong-Staal F, Broder S (1988). Dextran sulfate suppression of viruses in the HIV-family: inhibition of virion binding to CD4+ cells. Science 240:646–648

    PubMed  Google Scholar 

  129. Rusnati M, Tulipano G, Urbinati C, Tanghetti E, Giuliani R, Giacca M, Ciomei M, Corallini A, Presta M (1998) The basic domain in HIV-1 Tat protein as a target for polysulfonated heparin-mimicking extracellular Tat antagonist. J Biol Chem 273:16027–16037

    Article  CAS  PubMed  Google Scholar 

  130. Oravecz T, Pall M, Wang J, Roderiquez G, Ditto M, Norcross MA (1997) Regulation of anti-HIV-1 activity of RANTES by heparan sulfate proteoglycans. J Immunol 159:4587–4592

    CAS  PubMed  Google Scholar 

  131. Luster AD (1998) Chemokines—chemotactic cytokines that mediate inflammation. N Engl J Med 338:436–445

    Article  CAS  PubMed  Google Scholar 

  132. Gordon CJ, Muesing MA, Proudfoot AE, Power CA, Moore JP, Trkola A (1999) Enhancement of HIV-type 1 infection by the CC-chemokine RANTES is independent of the mechanism of virus-cell fusion. J Virol 73:684–694

    CAS  PubMed  Google Scholar 

  133. Albini A, Ferrini S, Benelli R, Sforzini S, Giunciuglio D, Aluigi MG, Proudfoot AEI, Alouani S, Wells TNC, Mariani G, Rabin RL, Farber JM, Noon DM (1998) HIV-1 Tat protein mimicry of chemokines. Proc Natl Acad Sci U S A 95:13153–13158

    Article  CAS  PubMed  Google Scholar 

  134. Tyago M, Rusnati M, Presta M, Giacca M (2001) Internalization of HIV-1 Tat requires cell surface heparan sulfate proteoglycans. J Biol Chem 276:3254–3261

    Article  PubMed  Google Scholar 

  135. Jia H, Lohr M, Jezequel S, Davis D, Shaikh S, Selwood D, Zachary I (2001) Cysteine-rich and basic domain HIV-1 Tat peptides inhibit angiogenesis and induce endothelial cell apoptosis. Biochem Biophy Res Commun 283:469–479

    Article  CAS  Google Scholar 

  136. Liu X-H, Hadley TJ, Xu X, Peiper SC, Ray PE (1999) Up-regulation of Duffy antigen receptor expression in children with renal disease. Kidney Int 55:1491–1500

    Article  CAS  PubMed  Google Scholar 

  137. Hadley TJ, Peiper SC (1997) From malaria to chemokine receptor: the emerging physiologic role of the Duffy blood group antigen. Blood 89:3077–3091

    CAS  PubMed  Google Scholar 

  138. Lachgar A, Jaureguiberry G, Le Buenac H, Bizzini B, Zagury JF, Rappaport J, Zagury D (1998) Binding of HIV-1 to RBC involves the Duffy antigen receptors for chemokines (DARC). Biomed Pharmacother 52:436–439

    Article  CAS  PubMed  Google Scholar 

  139. Darbone WC, Rice GC, Mohler MA, Apple T, Hebert C, Valente AJ, Baker JB (1991) Red cells are a sink for interleukin 8, a leukocyte chemotaxin. J Clin Invest 88:1362–1369

    PubMed  Google Scholar 

  140. Dawson TC, Lentsch AB, Wang Z, Cowhig JE, Rot N, Maeda N, Peiper SC (2000) Exaggerated response to endotoxin in mice lacking the Duffy antigen/receptor for chemokines (DARC). Blood 96:1681–1684

    CAS  PubMed  Google Scholar 

  141. Hadley TJ, Lu ZH, Wasniowska K, Martin AW, Peiper SC, Hesselgesser J (1994) Postcapillary venule endothelial cells in kidney express a multispecific chemokine receptor that is structural and functionally identically to the erythroid isoform, which is the Duffy blood group antigen. J Clin Invest 94:985–991

    CAS  PubMed  Google Scholar 

  142. Woolley IJ, Kalyjian R, Valdez H, Hamza H, Jacobs G, Lederman MM, Zimmerman PA (2001) HIV-nephropathy and the Duffy antigen/antigen receptor for chemokines in African Americans. J Nephrol 14:384–387

    CAS  PubMed  Google Scholar 

  143. Kim JM, Wu H, Green G, Winkler CA, Kopp JB, Miner JH, Unanue ER, Shaw AS (2003) CD2-associated protein haploinsufficiency is linked to glomerular disease susceptibility. Science 300:1298–1300

    Article  CAS  PubMed  Google Scholar 

  144. D’Agati V (2003) Pathologic classification of focal segmental glomerulosclerosis. Semin Nephrol 23:117–134

    Article  PubMed  Google Scholar 

  145. Singh HK, Baldree LA, McKenney DW, Hogan SL, Jennette JC (2000) Idiopathic collapsing glomerulopathy in children. Pediatr Nephrol 14:132–137

    Article  CAS  PubMed  Google Scholar 

  146. Moudgil A, Nast CC, Bagga A, Wei L, Nurmaamet A, Cohen AH, Hordan SC, Toyoda M (2001) Association of parvovirus B19 infection with idiopathic collapsing glomerulopathy. Kidney Int 59:2126–2133

    Article  CAS  PubMed  Google Scholar 

  147. Moore PS, Chang Y (1998) Kaposi’s sarcoma (KS), KS-associated herpesvirus, and the criteria for causality in the age of molecular biology. Am J Epidemiol 147:217–221

    CAS  PubMed  Google Scholar 

  148. Montaner S, Sodhi A, Molinolo A, Bugge TH, Sawai ET, He Y, Li Y, Ray PE, Gutkind JS (2003) Endothelial infection with KSHV genes in vivo reveals that vGPCR initiates Kaposi’s sarcomagenesis and can promote the tumorigenic potential of viral latent genes. Cancer Cell 3:23–36

    Article  CAS  PubMed  Google Scholar 

  149. Pomerantz FJ, Horn DL (2003) Twenty years of therapy for HIV-1 infection. Nature Med 9:867–873

    Article  CAS  PubMed  Google Scholar 

  150. Rao TK (2003) Human immunodeficiency virus infection in end-stage renal disease patients. Semin Dial 16:233–244

    Article  PubMed  Google Scholar 

  151. Szczech LA, Kalayjian R, Rodriguez R, Gupta D, Coladonato J, Winston J; Adult AIDS Clinical Trial Group Renal Complications Committee (2003) The clinical characterisitics and antiretroviral dosing patterns of HIV-infected patients receiving dialysis. Kidney Int 63:2295–2301

    Article  CAS  PubMed  Google Scholar 

  152. Rao TK (2001) Human immunodeficiency virus infection and renal failure. Infect Dis Clin North Am15:833–851

    Google Scholar 

  153. Sothinathan R, Briggs WA, Eustace JA (2001) Treatment of HIV-associated nephropathy. AIDS Patient Care STDs 15:363–371

    Article  CAS  PubMed  Google Scholar 

  154. Ifudu O, Rao TK, Tan CC, Fleischman H, Chirgwin K, Friedman EA (1995) Zidovudine is beneficial in human immunodeficiency virus associated nephropathy. Am J Nephrol 15:217–221

    CAS  PubMed  Google Scholar 

  155. Viani RM, Danker WM, Muelenaer PA, Spector SA (1999) Resolution of HIV-associated nephropathy nephrotic syndrome with highly active antiretroviral therapy delivered by gastrostomy tube. Pediatrics 104:1394–1396

    CAS  PubMed  Google Scholar 

  156. Wali RK, Drachenberg CI, Papdimitrious JC, Keay S, Ramos E (1998) HIV-1 associated nephropathy and response to highly-active antiretroviral therapy (letter). Lancet 352:783–784

    Article  CAS  PubMed  Google Scholar 

  157. Hedayati SS, Reddan DN, Szcech LA (2003) HIV-associated nephropathy: a review of the epidemiology and clinical course in the HAART era. AIDS Patient Care 17:57–63

    Article  Google Scholar 

  158. Kirchener JT (2002) Resolution of renal failure after initiation of HAART; 3 cases and a discussion of the literature. AIDS Read 12:103–105, 110–112

    PubMed  Google Scholar 

  159. Sgadari C, Monini P, Barillari G, Ensoli B (2000) Use of HIV-1 protease inhibitors to block Kaposi’s sarcoma and tumor growth. Lancet 4:537–547

    Google Scholar 

  160. Pati S, Peiser CB, Dufraine J, Bryant JL, Reitz MS, Weichold FF (2002) Antitumorigenic effects of HIV protease inhibitor ritonavir: inhibition of Kaposi sarcoma. Blood 99:1–9

    Article  Google Scholar 

  161. Sgadari C, Barillari G, Toschi E, Carlei D, Bacigalupo I, Baccarini S, Palladino C, Leone P, Bugarini R, Malavas L, Cafaro A, Falchi M, Valdembri D, Rezza G, Bussolino F, Monini P, Ensoli B (2002) HIV-protease inhibitors are potent anti-angiogenic molecules and promote regression of Kaposi sarcoma. Nature Med 8:225–232

    Article  CAS  PubMed  Google Scholar 

  162. Burns GC, Matute R, Onyema D, Davis I, Toth I (1994). Response to inhibition of angiotensin-converting enzyme in human immunodeficiency virus-associated nephropathy: a case report. Am J Kidney Dis 23:441–443

    CAS  PubMed  Google Scholar 

  163. Kimmel PL, Mishkin GJ, Umana WO (1996). Captopril and renal survival in patients with human immunodeficiency virus nephropathy. Am J Kidney Dis 28:202–208

    CAS  PubMed  Google Scholar 

  164. Wei A, Burns GC, Williams BA, Mohammed NB, Sivak SL (2003) Long-term renal survival in HIV-associated nephropathy with angiotensin-converting enzyme inhibition. Kidney Int 64:1462–1471

    Article  CAS  PubMed  Google Scholar 

  165. Ouellette DR, Kelly JW, Anders GT (1992) Serum angiotensin-converting enzyme level is elevated in patients with human immunodeficiency virus infection. Arch Intern Med 152:321–324

    Article  CAS  PubMed  Google Scholar 

  166. Bird JE, Durham SK, Giancarli MR, Giancarli MR, Gitlitz PH, Pandya DG, Dambach DM, Mozes MM, Kopp JB (1998) Captopril prevents nephropathy in HIV-transgenic mice. J Am Soc Nephrol 9:1441–1447

    CAS  PubMed  Google Scholar 

  167. Zhang SL, To C, Chen X, Filep JG, Tang SS, Ingelfinger JR, Chan JS (2002) Essential role(s) of the intrarenal renin-angiotensin system in transforming growth factor beta 1 gene expression and induction of hypertrophy of rat kidney proximal tubular cells in high glucose. J Am Soc Nephrol 13:302–312

    CAS  PubMed  Google Scholar 

  168. Guijarro C, Egido J (2001) Transcription factor-kappa B (NF-kappa B) and renal disease. Kidney Int 59:415–424

    Article  CAS  PubMed  Google Scholar 

  169. Nguyen L, Ward WF, Tsao C, Molteni A (1994) Captopril inhibits proliferation of human lung fibroblasts in culture: a potential antifibrotic mechanism. Proc Soc Exp Biol Med 205:80–84

    CAS  PubMed  Google Scholar 

  170. Fishel RS, Thourani V, Eisenberg SJ, Shai SY, Corson MA, Nabel EG, Bernstein KE, Berk BC (1995) Fibroblast growth factor stimulates angiotensin converting enzyme expression in vascular smooth muscle cells. Possible mediator of the response to vascular injury. J Clin Invest 95:377–387

    CAS  PubMed  Google Scholar 

  171. Volpert OV, Ward WF, Lingen MW, Chesler L, Solt DB, Johnson MD, Molteni A, Polverini PJ, Bouck NP (1996) Captopril inhibits angiogenesis and slows the growth of experimental tumors in rats. J Clin Invest 98:671–679

    CAS  PubMed  Google Scholar 

  172. Merchan JR, Chan B, Kale S, Schipper LE, Sukhatmen VP (2003) In vitro and in vivo induction of antiangiogenic activity by plasminogen activators and captopril. J Natl Cancer Inst 95:388–399

    Article  CAS  PubMed  Google Scholar 

  173. Vogt B, Frey FJ (1997) Inhibition of angiogenesis in Kaposi’s sarcoma by captopril (letter). Lancet 349:1148

    CAS  PubMed  Google Scholar 

  174. Barr Jr M (1994) Teratogen update. Angiotensin-converting enzyme inhibitors. Teratology 50:399–409

    CAS  PubMed  Google Scholar 

  175. The International Study of Kidney Disease in Children (1981) The primary nephrotic syndrome in children. Identification of patients with minimal change nephrotic syndrome from initial response to prednisone. J Pediatr 98:561-564

    PubMed  Google Scholar 

  176. Smith MC, Austen JL, Carey JT, Emancipator SN, Herbener T, Gripshover B, Mbanefo C, Phinney M, Rahman M, Salata RA, Weigel K, Kalayjian RC (1996) Prednisone improves renal function and proteinuria in human immunodeficiency virus-associated nephropathy. Am J Med 101:41–48

    Article  CAS  PubMed  Google Scholar 

  177. Rao TK (1997) Prednisone, renal function, and proteinuria in immunodeficiency virus-associated nephropathy. Am J Kidney Dis 30:156–159

    CAS  PubMed  Google Scholar 

  178. Eustace JA, Nuermberger E, Choi M, Scheel PJ, Moore R, Briggs WA (2000) Cohort study of the treatment of severe HIV-associated nephropathy with corticosteroids. Kidney Int 58:1253–1260

    Article  CAS  PubMed  Google Scholar 

  179. Szczech LA, Edwards LJ, Sanders LL, Horst C van der, Bartlett JA, Heald AE, Svetkey LP (2002) Protease inhibitors are associated with a slowed progression of HIV-related renal diseases. Clin Nephrol 57:336–341

    CAS  PubMed  Google Scholar 

  180. Stock P, Roland ME, Carlson L, Freise CE, Roberts JP, Hirose R, Terrault NA, Frassetto LA, Palefsky JM, Tomlanovich SJ, Ascher NL (2003) Kidney and liver transplantation in human immunodeficiency virus-infected patients: a pilot safety and efficacy study. Transplantation 76:370–375

    Article  PubMed  Google Scholar 

  181. Singh A, Tejani C, Tejani A (1999) One-center experience with cyclosporine in refractory nephrotic syndrome in children. Pediatr Nephrol 13:26–32

    Article  CAS  PubMed  Google Scholar 

  182. Lalezari JP, Henry K, O’Hearn M, Montaner JS, Piliero PJ, Trottier B, Walmsley S, Cohen S, Kuritzkes DR, Eon JJ, Chung J, DeMasi R, Donatacci L, Drobnes C, Delehanty J, Salgo M; TORO 1 Study Group (2003). Efuvirtide, an HIV-1 fusion inhibitor, for drug-resistant HIV infection in North and South America. N Engl J Med 348:2175–2185

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by National Institute of Health grants 2RO-1 DK 49419 and 2RO-1 HL 55605, and the “Fundación Argentina para el Desarrollo Infantil” from Buenos Aires, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricio E. Ray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ray, P.E., Xu, L., Rakusan, T. et al. A 20-year history of childhood HIV-associated nephropathy. Pediatr Nephrol 19, 1075–1092 (2004). https://doi.org/10.1007/s00467-004-1558-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-004-1558-1

Keywords

Navigation