Skip to main content
Log in

Genetic determination of nephrogenesis: the Pax/Eya/Six gene network

  • Editorial Commentary
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Development of the kidney serves as a paradigm to understand the mechanisms underlying the formation of an organ. The first sign of kidney development is the interaction between two tissues derived from the intermediate mesoderm, the metanephrogenic mesenchyme and the nephric duct. Many of the genes that play a crucial role in early kidney development, such as Pax2, Eya1, Six1, Six2, Sall1, Foxc1, Wt1, and the Hox11 genes, are expressed in the mesenchyme and encode transcription factors that—with few exceptions—are involved in regulation of the Gdnf gene. Moreover, mutations in a number of these genes in humans are associated with kidney diseases. Interestingly, many of the components regulating early kidney development are conserved throughout evolution and are also involved in eye and muscle formation in mammals, as well as in eye development in Drosophila. Genetic and biochemical studies in Drosophila and mice indicate that these genes and their respective products act in a complex network of interdependencies and positive and negative feedback loops. Genetic experiments have allowed us to begin to characterize the complex interactions between the individual components, but it will require additional biochemical and functional experiments to eventually understand the molecular functions of each of the participating proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–D

References

  1. Treisman JE (1999) A conserved blueprint for the eye? Bioessays 21:843–850

    PubMed  Google Scholar 

  2. Pignoni F, Hu B, Zavitz KH, Xiao J, Garrity PA, Zipursky SL (1997) The eye-specification proteins So and Eya form a complex and regulate multiple steps in Drosophila eye development. Cell 91:881–891

    CAS  PubMed  Google Scholar 

  3. Chen R, Amoui M, Zhang Z, Mardon G (1997) Dachshund and eyes absent proteins form a complex and function synergistically to induce ectopic eye development in Drosophila. Cell 91:893–903

    CAS  PubMed  Google Scholar 

  4. Heanue TA, Reshef R, Davis RJ, Mardon G, Oliver G, Tomarev S, Lassar AB, Tabin CJ (1999) Synergistic regulation of vertebrate muscle development by Dach2, Eya2, and Six1, homologs of genes required for Drosophila eye formation. Genes Dev 13:3231–3243

    Article  CAS  PubMed  Google Scholar 

  5. Ikeda K, Watanabe Y, Ohto H, Kawakami K (2002) Molecular interaction and synergistic activation of a promoter by Six, Eya, and Dach proteins mediated through CREB binding protein. Mol Cell Biol 22:6759–6766

    Article  CAS  PubMed  Google Scholar 

  6. Ohto H, Kamada S, Tago K, Tominaga SI, Ozaki H, Sato S, Kawakami K (1999) Cooperation of six and eya in activation of their target genes through nuclear translocation of Eya. Mol Cell Biol 19:6815–6824

    CAS  PubMed  Google Scholar 

  7. Torres M, Gomez-Pardo E, Dressler GR, Gruss P (1995) Pax-2 controls multiple steps of urogenital development. Development 121:4057–4065

    CAS  PubMed  Google Scholar 

  8. Mansouri A, Chowdhury K, Gruss P (1998) Follicular cells of the thyroid gland require Pax8 gene function. Nat Genet 19:87–90

    CAS  PubMed  Google Scholar 

  9. Bouchard M, Souabni A, Mandler M, Neubuser A, Busslinger M (2002) Nephric lineage specification by Pax2 and Pax8. Genes Dev 16:2958–2970

    Article  CAS  PubMed  Google Scholar 

  10. Mauch TJ, Yang G, Wright M, Smith D, Schoenwolf GC (2000) Signals from trunk paraxial mesoderm induce pronephros formation in chick intermediate mesoderm. Dev Biol 220:62–75

    Article  CAS  PubMed  Google Scholar 

  11. Armstrong JF, Pritchard-Jones K, Bickmore WA, Hastie ND, Bard JB (1993) The expression of the Wilms’ tumour gene, WT1, in the developing mammalian embryo. Mech Dev 40:85–97

    CAS  PubMed  Google Scholar 

  12. Rackley RR, Flenniken AM, Kuriyan NP, Kessler PM, Stoler MH, Williams BR (1993) Expression of the Wilms’ tumor suppressor gene WT1 during mouse embryogenesis. Cell Growth Differ 4:1023–1031

    CAS  PubMed  Google Scholar 

  13. Pritchard-Jones K, Fleming S, Davidson D, Bickmore W, Porteous D, Gosden C, Bard J, Buckler A, Pelletier J, Housman D, et al (1990) The candidate Wilms’ tumour gene is involved in genitourinary development. Nature 346:194–197

    Article  CAS  PubMed  Google Scholar 

  14. Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, Jaenisch R (1993) WT-1 is required for early kidney development. Cell 74:679–691

    CAS  PubMed  Google Scholar 

  15. Sainio K, Nonclercq D, Saarma M, Palgi J, Saxen L, Sariola H (1994) Neuronal characteristics in embryonic renal stroma. Int J Dev Biol 38:77–84

    CAS  PubMed  Google Scholar 

  16. Vainio S, Lin Y (2002) Coordinating early kidney development: lessons from gene targeting. Nat Rev Genet 3:533–543

    Article  CAS  PubMed  Google Scholar 

  17. Gilbert SF, Singer SR, Tyler MS, Kozlowski R N (2003) Developmental biology, 7th edn. Sinauer, Sunderland, Mass.

  18. Moore MW, Klein RD, Farinas I, Sauer H, Armanini M, Phillips H, Reichardt LF, Ryan AM, Carver-Moore K, Rosenthal A (1996) Renal and neuronal abnormalities in mice lacking GDNF. Nature 382:76–79

    CAS  PubMed  Google Scholar 

  19. Pichel JG, Shen L, Sheng HZ, Granholm AC, Drago J, Grinberg A, Lee EJ, Huang SP, Saarma M, Hoffer BJ, Sariola H, Westphal H (1996) Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382:73–76

    Article  CAS  PubMed  Google Scholar 

  20. Sanchez MP, Silos-Santiago I, Frisen J, He B, Lira S A, Barbacid M (1996) Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382:70–73

    CAS  PubMed  Google Scholar 

  21. Trupp M, Arenas E, Fainzilber M, Nilsson AS, Sieber BA, Grigoriou M, Kilkenny C, Salazar-Grueso E, Pachnis V, Arumae U (1996) Functional receptor for GDNF encoded by the c-ret proto-oncogene. Nature 381:785–789

    CAS  PubMed  Google Scholar 

  22. Sainio K, Suvanto P, Davies J, Wartiovaara J, Wartiovaara K, Saarma M, Arumae U, Meng X, Lindahl M, Pachnis V, Sariola H (1997) Glial-cell-line-derived neurotrophic factor is required for bud initiation from ureteric epithelium. Development 124:4077–4087

    CAS  PubMed  Google Scholar 

  23. Esquela AF, Lee SJ (2003) Regulation of metanephric kidney development by growth/differentiation factor 11. Dev Biol 257:356–370

    Article  CAS  PubMed  Google Scholar 

  24. Rodriguez-Soriano J, Vallo A, Bilbao JR, Castano L (2001) Branchio-oto-renal syndrome: identification of a novel mutation in the EYA1 gene. Pediatr Nephrol 16:550–553

    Article  CAS  PubMed  Google Scholar 

  25. Buller C, Xu X, Marquis V, Schwanke R, Xu PX (2001) Molecular effects of Eya1 domain mutations causing organ defects in BOR syndrome. Hum Mol Genet 10:2775–2781

    Article  CAS  PubMed  Google Scholar 

  26. Xu PX, Adams J, Peters H, Brown MC, Heaney S, Maas R (1999) Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nat Genet 23:113–117

    Article  CAS  PubMed  Google Scholar 

  27. Xu PX, Zheng W, Huang L, Maire P, Laclef C, Silvius D (2003) Six1 is required for the early organogenesis of mammalian kidney. Development 130:3085–3094

    Article  CAS  PubMed  Google Scholar 

  28. Wellik DM, Hawkes PJ, Capecchi MR (2002) Hox11 paralogous genes are essential for metanephric kidney induction. Genes Dev 16:1423–1432

    Article  CAS  PubMed  Google Scholar 

  29. Brophy PD, Ostrom L, Lang KM, Dressler GR (2001) Regulation of ureteric bud outgrowth by Pax2-dependent activation of the glial derived neurotrophic factor gene. Development 128:4747–4756

    CAS  PubMed  Google Scholar 

  30. Kume T, Deng K, Hogan BL (2000) Murine forkhead/winged helix genes Foxc1 (Mf1) and Foxc2 (Mfh1) are required for the early organogenesis of the kidney and urinary tract. Development 127:1387–1395

    CAS  PubMed  Google Scholar 

  31. Donovan MJ, Natoli TA, Sainio K, Amstutz A, Jaenisch R, Sariola H, Kreidberg JA (1999) Initial differentiation of the metanephric mesenchyme is independent of WT1 and the ureteric bud. Dev Genet 24:252–262

    Article  CAS  PubMed  Google Scholar 

  32. Nishinakamura R, Matsumoto Y, Nakao K, Nakamura K, Sato A, Copeland NG, Gilbert DJ, Jenkins NA, Scully S, Lacey DL, Katsuki M, Asashima M, Yokota T (2001) Murine homolog of SALL1 is essential for ureteric bud invasion in kidney development. Development 128:3105–3115

    CAS  PubMed  Google Scholar 

  33. Englert C (1998) WT1--more than a transcription factor? Trends Biochem Sci 23:389–393

    Article  CAS  PubMed  Google Scholar 

  34. Chow RL, Altmann CR, Lang RA, Hemmati-Brivanlou A (1999) Pax6 induces ectopic eyes in a vertebrate. Development 126:4213–4222

    CAS  PubMed  Google Scholar 

  35. Relaix F, Buckingham M (1999) From insect eye to vertebrate muscle: redeployment of a regulatory network. Genes Dev 13:3171–3178

    Article  CAS  PubMed  Google Scholar 

  36. Sanyanusin P, Schimmenti LA, McNoe LA, Ward TA, Pierpont ME, Sullivan MJ, Dobyns WB, Eccles MR (1995) Mutation of the PAX2 gene in a family with optic nerve colobomas, renal anomalies and vesicoureteral reflux. Nat Genet 9:358–364

    CAS  PubMed  Google Scholar 

  37. Favor J, Sandulache R, Neuhauser-Klaus A, Pretsch W, Chatterjee B, Senft E, Wurst W, Blanquet V, Grimes P, Sporle R, Schughart K (1996) The mouse Pax2(1Neu) mutation is identical to a human PAX2 mutation in a family with renal-coloboma syndrome and results in developmental defects of the brain, ear, eye, and kidney. Proc Natl Acad Sci U S A 93:13870–13875

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Cornelia Leimeister, Frank Bollig, Jürgen Klattig, and Shahidul Mohammad Makki for reading and improving this manuscript and the Deutsche Forschungsgemeinschaft for continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Englert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brodbeck, S., Englert, C. Genetic determination of nephrogenesis: the Pax/Eya/Six gene network. Pediatr Nephrol 19, 249–255 (2004). https://doi.org/10.1007/s00467-003-1374-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-003-1374-z

Keywords

Navigation