Skip to main content

Advertisement

Log in

Role of extracellular matrix in kidney development and repair

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Extracellular matrix (ECM) molecules and their receptors exert a dynamic role in cell-matrix interactions during kidney development and repair processes. They provide a physical substratum for the spatial organization of the cells, but also regulate cell growth and proliferation by interacting with growth factors. In addition, they can regulate signal transduction pathways by binding to integrins or by modulating the activity of signaling molecules such as Wnts. ECM and ECM-related molecules control multiple (if not all) steps of kidney development, including ureteric bud branching morphogenesis, mesenchymal condensation, nephron formation, terminal differentiation of renal tubules, and glomerular basement membrane assembly. Their role still needs to be better documented in renal repair. The emergence of conditionally mutated mice for basement membrane components will provide a useful tool to demonstrate further the involvement of ECM and ECM-related proteins in development and repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Saxen L (1987) Organogenesis of the kidney. Cambridge University Press, Cambridge

  2. Safirstein R (1999) Renal regeneration: reiterating a developmental paradigm. Kidney Int 56:1599–1600

    Article  CAS  PubMed  Google Scholar 

  3. Grobstein C, Cohen J (1965) Effect of the morphogenesis of embryonic salivary epithelium in vitro. Science 150:626–628

    CAS  PubMed  Google Scholar 

  4. Wallner EI, Yang Q, Peterson DR, Wada J, Kanwar YS (1998) Relevance of extracellular matrix, its receptors, and cell adhesion molecules in mammalian nephrogenesis. Am J Physiol 275:F467–F477

    CAS  PubMed  Google Scholar 

  5. Davies J, Lyon M, Gallagher J, Garrod D (1995) Sulphated proteoglycan is required for collecting duct growth and branching but not nephron formation during kidney development. Development 121:1507–1517

    CAS  PubMed  Google Scholar 

  6. Kispert A, Vainio S, Shen L, Rowitch DH, McMahon AP (1996) Proteoglycans are required for maintenance of Wnt-11 expression in the ureter tips. Development 122:3627–3637

    CAS  PubMed  Google Scholar 

  7. Pohl M, Sakurai H, Stuart RO, Nigam SK (2000) Role of hyaluronan and CD44 in in vitro branching morphogenesis of ureteric bud cells. Dev Biol 224:312–325

    CAS  PubMed  Google Scholar 

  8. Bullock SL, Fletcher JM, Beddington RS, Wilson VA (1998) Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase. Genes Dev 12:1894–1906

    CAS  PubMed  Google Scholar 

  9. Sainio K, Suvanto P, Davies J, Wartiovaara J, Wartiovaara K, Saarma M, Arumae U, Meng X, Lindahl M, Pachnis V, Sariola H (1997) Glial-cell-line-derived neurotrophic factor is required for bud initiation from ureteric epithelium. Development 124:4077–4087

    CAS  PubMed  Google Scholar 

  10. Schlessinger J, Lax I, Lemmon M (1995) Regulation of growth factor activation by proteoglycans: what is the role of the low affinity receptors? Cell 83:357–360

    Google Scholar 

  11. Miyazaki Y, Oshima K, Fogo A, Hogan BL, Ichikawa I (2000) Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J Clin Invest 105:863–873

    CAS  PubMed  Google Scholar 

  12. Sakurai H, Bush KT, Nigam SK (2001) Identification of pleiotrophin as a mesenchymal factor involved in ureteric bud branching morphogenesis. Development 128:3283–3293

    CAS  PubMed  Google Scholar 

  13. Vainio S, Lin Y (2002) Organogenesis: coordinating early kidney development: lessons from gene targeting. Nat Rev Genet 3:533–543

    Article  CAS  PubMed  Google Scholar 

  14. Platt JL, Trescony P, Lindman B, Oegema TR (1990) Heparin and heparan sulfate delimit nephron formation in fetal metanephric kidneys. Dev Biol 139:338–348

    CAS  PubMed  Google Scholar 

  15. Stark K, Vainio S, Vassileva G, McMahon AP (1994) Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 372:679–683

    CAS  PubMed  Google Scholar 

  16. Itaranta P, Lin Y, Perasaari J, Roel G, Destree O, Vainio S (2002) Wnt-6 is expressed in the ureteric bud and induces kidney tubule development in vitro. Genesis 32:259–268

    Article  CAS  PubMed  Google Scholar 

  17. Barasch J, Qiao J, McWilliams G, Chen D, Oliver JA, Herzlinger D (1997) Ureteric bud cells secrete multiple factors, including bFGF, which rescue renal progenitors from apoptosis. Am J Physiol 273:F757–F767

    CAS  PubMed  Google Scholar 

  18. Barasch J, Yang J, Ware CB, Taga T, Yoshida K, Erdjument-Bromage H, Tempst P, Parravicini E, Malach S, Aranoff T, Oliver JA (1999) Mesenchymal to epithelial conversion in rat metanephros is induced by LIF. Cell 99:377–386

    CAS  PubMed  Google Scholar 

  19. Plisov SY, Yoshino K, Dove LF, Higinbotham KG, Rubin JS, Perantoni AO (2001) TGFβ 2, LIF and FGF2 cooperate to induce nephrogenesis. Development 128:1045–1057

    CAS  PubMed  Google Scholar 

  20. Halfter W, Dong S, Schurer B, Cole GJ (1998) Collagen XVIII is a basement membrane heparan sulfate proteoglycan. J Biol Chem 273:25404–25412

    Article  CAS  PubMed  Google Scholar 

  21. Lin Y, Zhang S, Rehn M, Itaranta P, Tuukkanen J, Heljasvaara R, Peltoketo H, Pihlajaniemi T, Vainio S (2001) Induced repatterning of type XVIII collagen expression in ureteric bud from kidney to lung type: association with sonic hedgehog and ectopic surfactant protein C. Development 128:1573–1585

    CAS  PubMed  Google Scholar 

  22. Karihaloo A, Karumanchi SA, Barasch J, Jha V, Nickel CH, Yang J, Grisaru S, Bush KT, Nigam S, Rosenblum ND, Sukhatme VP, Cantley LG (2001) Endostatin regulates branching morphogenesis of renal epithelial cells and ureteric bud. Proc Natl Acad Sci U S A 98:12509–12514

    Article  CAS  PubMed  Google Scholar 

  23. Kim YM, Jang JW, Lee OH, Yeon J, Choi EY, Kim KW, Lee ST, Kwon YG (2000) Endostatin inhibits endothelial and tumor cellular invasion by blocking the activation and catalytic activity of matrix metalloproteinase. Cancer Res 60:5410–5413

    CAS  PubMed  Google Scholar 

  24. Willem M, Miosge N, Halfter W, Smyth N, Jannetti I, Burghart E, Timpl R, Mayer U (2002) Specific ablation of the nidogen-binding site in the laminin γ1 chain interferes with kidney and lung development. Development 129:2711–2722

    CAS  PubMed  Google Scholar 

  25. Miner JH (1999) Renal basement membrane components. Kidney Int 56:2016–2024

    Article  CAS  PubMed  Google Scholar 

  26. Miner JH, Li C (2000) Defective glomerulogenesis in the absence of laminin α5 demonstrates a developmental role for the kidney glomerular basement membrane. Dev Biol 217:278–289

    Article  PubMed  Google Scholar 

  27. Zent R, Bush KT, Pohl ML, Quaranta V, Koshikawa N, Wang Z, Kreidberg JA, Sakurai H, Stuart RO, Nigam SK (2001) Involvement of laminin binding integrins and laminin-5 in branching morphogenesis of the ureteric bud during kidney development. Dev Biol 238:289–302

    Article  CAS  PubMed  Google Scholar 

  28. Ryan MC, Lee K, Miyashita Y, Carter WG (1999) Targeted disruption of the LAMA3 gene in mice reveals abnormalities in survival and late stage differentiation of epithelial cells. J Cell Biol 145:1309–1323

    CAS  PubMed  Google Scholar 

  29. De Arcangelis A, Mark M, Kreidberg J, Sorokin L, Georges-Labouesse E (1999) Synergistic activities of α3 and α6 integrins are required during apical ectodermal ridge formation and organogenesis in the mouse. Development 126:3957–3968

    PubMed  Google Scholar 

  30. Muller U, Brandli AW (1999) Cell adhesion molecules and extracellular matrix constituents in kidney development and disease. J Cell Sci 112:3855–3867

    CAS  PubMed  Google Scholar 

  31. Yamada H, Saito F, Fukuta-Ohi H, Zhong D, Hase A, Arai K, Okuyama A, Maekawa R, Shimizu T, Matsumura K (2001) Processing of β-dystroglycan by matrix metalloproteinase disrupts the link between the extracellular matrix and cell membrane via the dystroglycan complex. Hum Mol Genet 10:1563–1569

    Article  CAS  PubMed  Google Scholar 

  32. Muller U, Wang D, Denda S, Meneses JJ, Pedersen RA, Reichardt LF (1997). Integrin alpha8beta1 is critically important for epithelial-mesenchymal interactions during kidney morphogenesis. Cell 88:603–613

    CAS  PubMed  Google Scholar 

  33. Valerius MT, Patterson LT, Feng Y, Potter SS (2002) Hoxa 11 is upstream of Integrin α8 expression in the developing kidney. Proc Natl Acad Sci U S A 99:8090–8095

    Article  CAS  PubMed  Google Scholar 

  34. Brandenberger R, Schmidt A, Linton J, Wang D, Backus C, Denda S, Muller U, Reichardt LF (2001) Identification and characterization of a novel extracellular matrix protein nephronectin that is associated with integrin α8β1 in the embryonic kidney. J Cell Biol 154:447–458

    CAS  PubMed  Google Scholar 

  35. Winyard PJ, Bao Q, Hughes RC, Woolf AS (1997) Epithelial galectin-3 during human nephrogenesis and childhood cystic diseases. J Am Soc Nephrol 8:1647–1657

    CAS  PubMed  Google Scholar 

  36. Bullock SL, Johnson TM, Bao Q, Hughes RC, Winyard PJ, Woolf AS (2001) Galectin-3 modulates ureteric bud branching in organ culture of the developing mouse kidney. J Am Soc Nephrol 12:515–523

    CAS  PubMed  Google Scholar 

  37. Lelongt B, Trugnan G, Murphy G, Ronco PM (1997) Matrix metalloproteinases MMP2 and MMP9 are produced in early stages of kidney morphogenesis but only MMP9 is required for renal organogenesis in vitro. J Cell Biol 136:1363–1373

    Article  CAS  PubMed  Google Scholar 

  38. Kanwar YS, Ota K, Yang Q, Wada J, Kashihara N, Tian Y, Wallner EI (1999) Role of membrane-type matrix metalloproteinase 1 (MT-1-MMP), MMP-2, and its inhibitor innephrogenesis. Am J Physiol 277:F934–F947

    CAS  PubMed  Google Scholar 

  39. Barasch J, Yang J, Qiao J, Tempst P, Erdjument-Bromage H, Leung W, Oliver JA (1999) Tissue inhibitor of metalloproteinase-2 stimulates mesenchymal growth and regulates epithelial branching during morphogenesis of the rat metanephros. J Clin Invest 103:1299–1307

    CAS  PubMed  Google Scholar 

  40. Pohl M, Sakurai H, Bush KT, Nigam SK (2000) Matrix metalloproteinases and their inhibitors regulate in vitro ureteric bud branching morphogenesis. Am J Physiol 279:F891–F900

    CAS  Google Scholar 

  41. Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516

    Article  CAS  PubMed  Google Scholar 

  42. Pohl M, Stuart RO, Sakurai H, Nigam SK (2000) Branching morphogenesis during kidney development. Annu Rev Physiol 62:595–620

    CAS  PubMed  Google Scholar 

  43. Al-Awqati Q, Vijayakumar S, Takito J, Hikita C, Yan L, Wiederholt T (2000) Phenotypic plasticity and terminal differentiation of the intercalated cell: the hensin pathway. Exp Nephrol 8:66–71

    Article  CAS  PubMed  Google Scholar 

  44. Schwartz GJ, Tsuruoka S, Vijayakumar S, Petrovic S, Mian A, Al-Awqati Q (2002) Acid incubation reverses the polarity of intercalated cell transporters, an effect mediated by hensin. J Clin Invest 109:89–99

    Article  CAS  PubMed  Google Scholar 

  45. Hikita C, Vijayakumar S, Takito J, Erdjument-Bromage H, Tempst P, Al-Awqati Q (2000) Induction of terminal differentiation in epithelial cells requires polymerization of hensin by galectin-3. J Cell Biol 151:1235–1246

    Google Scholar 

  46. Wilson PD (2001) Polycystin: new aspects of structure, function, and regulation. J Am Soc Nephrol 12:834–845

    CAS  PubMed  Google Scholar 

  47. Chauvet V, Qian F, Boute N, Cai Y, Phakdeekitacharoen B, Onuchic LF, Attie-Bitach T, Guicharnaud L, Devuyst O, Germino GG, Gubler MC (2002) Expression of PKD1 and PKD2 transcripts and proteins in human embryo and during normal kidney development. Am J Pathol 160:973–983

    CAS  PubMed  Google Scholar 

  48. Grantham JJ (2001) Polycystic kidney disease: from the bedside to the gene and back. Curr Opin Nephrol Hypertens 10:533–542

    CAS  PubMed  Google Scholar 

  49. Nickel C, Benzing T, Sellin L, Gerke P, Karihaloo A, Liu ZX, Cantley LG, Walz G (2002) The polycystin-1 C-terminal fragment triggers branching morphogenesis and migration of tubular kidney epithelial cells. J Clin Invest 109:481–489

    Article  CAS  PubMed  Google Scholar 

  50. Lemmink HH, Schroder CH, Monnens LA, Smeets HJ (1997) The clinical spectrum of type IV collagen mutations. Hum Mutat 9:477–499

    CAS  PubMed  Google Scholar 

  51. Veis DJ, Sorenson CM, Shutter JR, Korsmeyer SJ (1993) Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75:229–240

    CAS  PubMed  Google Scholar 

  52. Basile DP, Liapis H, Hammerman MR (1997) Expression of bcl-2 and bax in regenerating rat renal tubules following ischemic injury. Am J Physiol 272:F640–F647

    CAS  PubMed  Google Scholar 

  53. Bergin E, Levine JS, Koh JS, Lieberthal W (2002) Mouse proximal tubular cell-cell adhesion inhibits apoptosis by a cadherin-dependent mechanism. Am J Physiol 278:F758–F768

    Google Scholar 

  54. Nigam S, Lieberthal W (1999) Acute renal failure. III. The role of growth factors in the process of renal regeneration and repair. Am J Physiol 279:F3–F11

    Google Scholar 

  55. Manes S, Llorente M, Lacalle RA, Gomez-Mouton C, Kremer L, Mira E, Martinez-AC (1999) The matrix metalloproteinase-9 regulates the insulin-like growth factor-triggered autocrine response in DU-145 carcinoma cells. J Biol Chem 27:6935–6945

    Article  Google Scholar 

  56. Umeda Y, Miyazaki Y, Shiinoki H, Higashiyama S, Nakanishi Y, Hieda Y (2001) Involvement of heparin-binding EGF-like growth factor and its processing by metalloproteinases in early epithelial morphogenesis of the submandibular gland. Dev Biol 237:202–211

    Article  CAS  PubMed  Google Scholar 

  57. Yang J, Shultz RW, Mars WM, Wegner RE, Li Y, Dai C, Nejak K, Liu Y (2002) Disruption of tissue-type plasminogen activator gene in mice reduces renal interstitial fibrosis in obstructive nephropathy. J Clin Invest 110:1525–1538

    Article  CAS  PubMed  Google Scholar 

  58. Basile DP, Martin DR, Hammerman MR (1998) Extracellular matrix-related genes in kidney after ischemic injury: potential role for TGF-beta in repair. Am J Physiol 275:F894–F903

    CAS  PubMed  Google Scholar 

  59. Zuk A, Bonventre JV, Matlin KS (2001) Expression of fibronectin splice variants in the postischemic rat kidney. Am J Physiol 280:F1037–F1053

    CAS  Google Scholar 

  60. Zuk A, Matlin KS (2002) Induction of a laminin isoform and alpha(3)beta(1)-integrin in renal ischemic injury and repair in vivo. Am J Physiol 283:F971–F984

    Google Scholar 

  61. Zuk A, Bonventre JV, Brown D, Matlin KS (1998) Polarity, integrin, and extracellular matrix dynamics in the postischemic rat kidney. Am J Physiol 275:C711–C731

    CAS  PubMed  Google Scholar 

  62. Nishiyama J, Kobayashi S, Ishida A, Nakabayashi I, Tajima O, Miura S, Katayama M, Nogami H (2000) Up-regulation of galectin-3 in acute renal failure of the rat. Am J Pathol 157:815–823

    CAS  PubMed  Google Scholar 

  63. Xie Y, Sakatsume M, Nishi S, Narita I, Arakawa M, Gejyo F (2001) Expression, roles, receptors, and regulation of osteopontin in the kidney. Kidney Int 60:1645–1657

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Studies performed in our laboratory were supported by INSERM, Université Paris 6, and grants from the Association pour la Recherche contre le Cancer (no. 5714 ) and from the Ministère de la Recherche (ACI no. 1A061G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitte Lelongt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lelongt, B., Ronco, P. Role of extracellular matrix in kidney development and repair. Pediatr Nephrol 18, 731–742 (2003). https://doi.org/10.1007/s00467-003-1153-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-003-1153-x

Keywords

Navigation