Skip to main content

Advertisement

Log in

Reduced-order modeling of nonlinear structural dynamical systems via element-wise stiffness evaluation procedure combined with hyper-reduction

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In nonlinear analysis, performing iterative inverse calculation and nonlinear system construction procedures incurs expensive computational costs. This paper presents an element-wise stiffness evaluation procedure combined with hyper-reduction reduced-order modeling (HE-STEP ROM) method. The proposed approach constructs a non-intrusive reduced-order model based on an element-wise stiffness evaluation procedure (E-STEP) and hyper-reduction methods. Because the E-STEP evaluates nonlinear stiffness coefficients element-by-element using cubic polynomial, numerous number of polynomial variables are required. The number of variables directly affects the computational efficiency of the online and offline stages. Therefore, to enhance efficiency of the online/offline stages, the proposed method employs hyper-reduction method. By applying hyper-reduction, the full stiffness coefficients are approximated from the stiffness coefficients evaluated at a few sampling points. Subsequently, the number of polynomial equations and variables is prominently reduced, and the efficiency of the reduced system increases. The efficiency and accuracy of the proposed approach are validated via several structural dynamic problems with geometric and material nonlinearities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Hoang KC, Fu Y, Song JH (2016) An hp-proper orthogonal decomposition–moving least squares approach for molecular dynamics simulation. Comput Methods Appl Mech Eng 298:548–575

    Article  MathSciNet  MATH  Google Scholar 

  2. Willcox K, Peraire J (2002) Balanced model reduction via the proper orthogonal decomposition. AIAA journal 40(11):2323–2330

    Article  Google Scholar 

  3. Glaz B, Liu L, Friedmann PP (2010) Reduced-order nonlinear unsteady aerodynamic modeling using a surrogate-based recurrence framework. AIAA journal 48(10):2418–2429

    Article  Google Scholar 

  4. Willcox K, Peraire J, White J (2002) An Arnoldi approach for generation of reduced-order models for turbomachinery. Comput Fluids 31(3):369–389

    Article  MATH  Google Scholar 

  5. Glaz B, Friedmann PP, Liu L, Cajigas JG, Bain J, Sankar LN (2013) Reduced-order dynamic stall modeling with swept flow effects using a surrogate-based recurrence framework. AIAA journal 51(4):910–921

    Article  Google Scholar 

  6. Davidsson P, Sandberg G (2006) A reduction method for structure-acoustic and poroelastic-acoustic problems using interface-dependent Lanczos vectors. Comput Methods Appl Mech Eng 195(17–18):1933–1945

    Article  MATH  Google Scholar 

  7. Daescu DN, Navon IM (2008) A dual-weighted approach to order reduction in 4DVAR data assimilation. Mon Weather Rev 136(3):1026–1041

    Article  Google Scholar 

  8. Lee J, Cho M (2018) Efficient design optimization strategy for structural dynamic systems using a reduced basis method combined with an equivalent static load. Structural and Multidisciplinary Optimization 58(4):1489–1504

    Article  MathSciNet  Google Scholar 

  9. Spiess, H., & Wriggers, P. (2005, December). Reduction methods for FE analysis in nonlinear structural dynamics. In PAMM: Proceedings in Applied Mathematics and Mechanics (Vol. 5, No. 1, pp. 135-136). Berlin: WILEY‐VCH Verlag.

  10. Cho H, Shin S, Kim H, Cho M (2020) Enhanced model-order reduction approach via online adaptation for parametrized nonlinear structural problems. Comput Mech 65(2):331–353

    Article  MathSciNet  Google Scholar 

  11. Peherstorfer B, Willcox K (2015) Dynamic data-driven reduced-order models. Comput Methods Appl Mech Eng 291:21–41

    Article  MathSciNet  MATH  Google Scholar 

  12. Guo M, Hesthaven JS (2018) Reduced order modeling for nonlinear structural analysis using gaussian process regression. Comput Methods Appl Mech Eng 341:807–826

    Article  MathSciNet  MATH  Google Scholar 

  13. Ghavamian F, Tiso P, Simone A (2017) POD–DEIM model order reduction for strain-softening viscoplasticity. Comput Methods Appl Mech Eng 317:458–479

    Article  MathSciNet  MATH  Google Scholar 

  14. Baur U, Benner P, Feng L (2014) Model order reduction for linear and nonlinear systems: a system-theoretic perspective. Archives of Computational Methods in Engineering 21(4):331–358

    Article  MathSciNet  MATH  Google Scholar 

  15. Bai Z (2002) Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems. Applied numerical mathematics 43(1–2):9–44

    Article  MathSciNet  MATH  Google Scholar 

  16. Sirovich, L. (1987). Turbulence and the dynamics of coherent structures. I. Coherent structures. Quarterly of applied mathematics45(3), 561-571.

  17. Chatterjee, A. (2000). An introduction to the proper orthogonal decomposition. Current science, 808-817.

  18. Breuer KS, Sirovich L (1991) The use of the Karhunen-Loeve procedure for the calculation of linear eigenfunctions. J Comput Phys 96(2):277–296

    Article  MathSciNet  MATH  Google Scholar 

  19. Everson R, Sirovich L (1995) Karhunen-Loeve procedure for gappy data. JOSA A 12(8):1657–1664

    Article  Google Scholar 

  20. Astrid P, Weiland S, Willcox K, Backx T (2008) Missing point estimation in models described by proper orthogonal decomposition. IEEE Trans Autom Control 53(10):2237–2251

    Article  MathSciNet  MATH  Google Scholar 

  21. Chaturantabut S, Sorensen DC (2010) Nonlinear model reduction via discrete empirical interpolation. SIAM J Sci Comput 32(5):2737–2764

    Article  MathSciNet  MATH  Google Scholar 

  22. Chaturantabut, S., & Sorensen, D. C. (2009, December). Discrete empirical interpolation for nonlinear model reduction. In Proceedings of the 48 h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference (pp. 4316-4321). IEEE.

  23. Xiao D, Fang F, Buchan AG, Pain CC, Navon IM, Du J, Hu G (2014) Non-linear model reduction for the Navier-Stokes equations using residual DEIM method. J Comput Phys 263:1–18

    Article  MathSciNet  MATH  Google Scholar 

  24. Ghavamian F, Tiso P, Simone A (2017) POD–DEIM model order reduction for strain-softening viscoplasticity. Comput Methods Appl Mech Eng 317:458–479

    Article  MathSciNet  MATH  Google Scholar 

  25. Drmac Z, Saibaba AK (2018) The discrete empirical interpolation method: Canonical structure and formulation in weighted inner product spaces. SIAM Journal on Matrix Analysis and Applications 39(3):1152–1180

    Article  MathSciNet  MATH  Google Scholar 

  26. Carlberg K, Farhat C, Cortial J, Amsallem D (2013) The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows. J Comput Phys 242:623–647

    Article  MathSciNet  MATH  Google Scholar 

  27. Carlberg K, Barone M, Antil H (2017) Galerkin v. least-squares Petrov-Galerkin projection in nonlinear model reduction. J Comput Phys 330:693–734

    Article  MathSciNet  MATH  Google Scholar 

  28. Farhat C, Avery P, Chapman T, Cortial J (2014) Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy-based mesh sampling and weighting for computational efficiency. Int J Numer Meth Eng 98(9):625–662

    Article  MathSciNet  MATH  Google Scholar 

  29. Farhat C, Chapman T, Avery P (2015) Structure-preserving, stability, and accuracy properties of the energy-conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models. Int J Numer Meth Eng 102(5):1077–1110

    Article  MathSciNet  MATH  Google Scholar 

  30. Xiao D, Fang F, Pain C, Hu G (2015) Non-intrusive reduced-order modelling of the Navier-Stokes equations based on RBF interpolation. Int J Numer Meth Fluids 79(11):580–595

    Article  MathSciNet  Google Scholar 

  31. Xiao D, Yang P, Fang F, Xiang J, Pain CC, Navon IM (2016) Non-intrusive reduced order modelling of fluid–structure interactions. Comput Methods Appl Mech Eng 303:35–54

    Article  MathSciNet  MATH  Google Scholar 

  32. Muravyov AA, Rizzi SA (2003) Determination of nonlinear stiffness with application to random vibration of geometrically nonlinear structures. Comput Struct 81(15):1513–1523

    Article  Google Scholar 

  33. Capiez-Lernout E, Soize C, Mignolet MP (2014) Post-buckling nonlinear static and dynamical analyses of uncertain cylindrical shells and experimental validation. Comput Methods Appl Mech Eng 271:210–230

    Article  MathSciNet  MATH  Google Scholar 

  34. Radu, A., Kim, K., Yang, B., & Mignolet, M. (2004, April). Prediction of the dynamic response and fatigue life of panels subjected to thermo-acoustic loading. In 45th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics & materials conference (p. 1557).

  35. Mignolet MP, Soize C (2008) Stochastic reduced order models for uncertain geometrically nonlinear dynamical systems. Comput Methods Appl Mech Eng 197(45–48):3951–3963

    Article  MathSciNet  MATH  Google Scholar 

  36. Kim E, Kim H, Cho M (2017) Model order reduction of multibody system dynamics based on stiffness evaluation in the absolute nodal coordinate formulation. Nonlinear Dyn 87(3):1901–1915

    Article  Google Scholar 

  37. Kim E, Cho M (2018) Design of a planar multibody dynamic system with ANCF beam elements based on an element-wise stiffness evaluation procedure. Structural and Multidisciplinary Optimization 58(3):1095–1107

    Article  MathSciNet  Google Scholar 

  38. Drmac Z, Gugercin S (2016) A new selection operator for the discrete empirical interpolation method—improved a priori error bound and extensions. SIAM J Sci Comput 38(2):A631–A648

    Article  MathSciNet  MATH  Google Scholar 

  39. Argaud, J. P., Bouriquet, B., Gong, H., Maday, Y., & Mula, O. (2017). Stabilization of (G) EIM in presence of measurement noise: application to nuclear reactor physics. In Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016 (pp. 133-145). Springer, Cham.

  40. Peherstorfer, B., Drmač, Z., & Gugercin, S. (2018). Stabilizing discrete empirical interpolation via randomized and deterministic oversampling. arXiv preprint arXiv:1808.10473.

  41. Ipsen IC, Nadler B (2009) Refined perturbation bounds for eigenvalues of Hermitian and non-Hermitian matrices. SIAM Journal on Matrix Analysis and Applications 31(1):40–53

    Article  MathSciNet  MATH  Google Scholar 

  42. Lu Y, Blal N, Gravouil A (2018) Space–time POD based computational vademecums for parametric studies: application to thermo-mechanical problems. Advanced Modeling and Simulation in Engineering Sciences 5(1):3

    Article  Google Scholar 

  43. Lu Y, Blal N, Gravouil A (2018) Adaptive sparse grid based HOPGD: Toward a nonintrusive strategy for constructing space-time welding computational vademecum. Int J Numer Meth Eng 114(13):1438–1461

    Article  MathSciNet  Google Scholar 

  44. Lu Y, Blal N, Gravouil A (2018) Multi-parametric space-time computational vademecum for parametric studies: Application to real time welding simulations. Finite Elem Anal Des 139:62–72

    Article  MathSciNet  MATH  Google Scholar 

  45. Kim E, Cho M (2017) Equivalent model construction for a non-linear dynamic system based on an element-wise stiffness evaluation procedure and reduced analysis of the equivalent system. Comput Mech 60(5):709–724

    Article  MathSciNet  MATH  Google Scholar 

  46. Zimmermann R, Willcox K (2016) An accelerated greedy missing point estimation procedure. SIAM J Sci Comput 38(5):A2827–A2850

    Article  MathSciNet  MATH  Google Scholar 

  47. Weyl H (1912) Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung). Math Ann 71(4):441–479

    Article  MathSciNet  MATH  Google Scholar 

  48. Freitag S, Cao BT, Ninić J, Meschke G (2015) Hybrid surrogate modelling for mechanised tunnelling simulations with uncertain data. Int J Reliab Saf 9(2–3):154–173

    Article  Google Scholar 

  49. Cao BT, Freitag S, Meschke G (2016) A hybrid RNN-GPOD surrogate model for real-time settlement predictions in mechanised tunnelling. Advanced Modeling and Simulation in Engineering Sciences 3(1):5

    Article  Google Scholar 

  50. Xiao D, Fang F, Pain CC, Navon IM, Salinas P, Muggeridge A (2015) Non-intrusive reduced order modeling of multi-phase flow in porous media using the POD-RBF method. J Comput Phys 1:1–25

    Google Scholar 

  51. Xiao D, Fang F, Pain CC, Navon IM, Salinas P, Wang Z (2018) Non-intrusive model reduction for a 3D unstructured mesh control volume finite element reservoir model and its application to fluvial channels. Int J Oil Gas Coal Technol 19(3):316–339

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation (NRF) of Korea funded by the Korea government (MSIP) (Grant No. 2012R1A3A2048841).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maenghyo Cho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A : Stiffness evaluation procedure using the least squares method

To clarify the explanation, the displacement combination and stiffness coefficient matrices in Equation (2) are newly defined, as follows:

$$ \Gamma _{i} \left( {\mathbf{u}} \right) = \Gamma _{i} \left( {\mathbf{u}} \right)_{1} + \Gamma _{i} \left( {\mathbf{u}} \right)_{2} \cdots + \Gamma _{i} \left( {\mathbf{u}} \right)_{En} \approx \mathop \sum \limits_{m = 1}^{En} \left[ {K_{ijkl}^{{}} u_{j} u_{k} u_{l} } \right]_{m} $$
(A1)

where Kijkl includes \( K_{ij}^{1} ,K_{ijk}^{2} \), and \( K_{ijkl}^{3} \) in Equation (A1). ujukul is the displacement combination, which includes 1 as its value, and can also be expressed as uj and ujuk (\( u_{j} \cdot 1 \cdot 1 \) and \( u_{j} u_{k} \cdot 1 \)).

If the sample data sets, with internal force and displacement, are collected from the sampling analysis, the internal force model of Equation (A1) for the mth element can be represented as follows:

$$ \left[ {\begin{array}{*{20}c} {\Gamma _{11} } & \cdots & {\Gamma _{1S} } \\ \vdots & \ddots & \vdots \\ {\Gamma _{n1} } & \cdots & {\Gamma _{nS} } \\ \end{array} } \right]_{m} = \left[ {\begin{array}{*{20}c} {\tilde{K}_{11} } & \cdots & {\tilde{K}_{1p} } \\ \vdots & \ddots & \vdots \\ {\tilde{K}_{n1} } & \cdots & {\tilde{K}_{np} } \\ \end{array} } \right]_{m} \times \left[ {\begin{array}{*{20}c} {\tilde{u}_{11} } & \cdots & {\tilde{u}_{1S} } \\ \vdots & \ddots & \vdots \\ {\tilde{u}_{p1} } & \cdots & {\tilde{u}_{pS} } \\ \end{array} } \right]_{m} $$
(A2)

where m, n, p, and S are the element number, number of degrees of freedom for one element, number of displacement combinations for one element, and quantity of sample data, respectively. \( \tilde{K} \) and \( \tilde{u} \) indicate one combination of Kijkl and ujukul in Equation (A1), respectively. Γm and \( \tilde{\varvec{u}}_{m} \) are the sampled internal force and displacement combination matrix in Equation (A2), respectively. Equation (A2) can be expressed as \( {\varvec{\Gamma}}_{m} = \tilde{\varvec{K}}_{m} \tilde{\varvec{u}}_{m} \). The least squares method is used to evaluate the stiffness coefficient matrix, \( \tilde{\varvec{K}}_{m} \), even if it is not a square matrix. Thus, the stiffness coefficient matrix can be solved for displacement combinations using the least squares method, as follows:

$$ \left[ {\begin{array}{*{20}c} {\Gamma _{11} } & \cdots & {\Gamma _{1S} } \\ \vdots & \ddots & \vdots \\ {\Gamma _{n1} } & \cdots & {\Gamma _{nS} } \\ \end{array} } \right]_{m} \left[ {\begin{array}{*{20}c} {\tilde{u}_{11} } & \cdots & {\tilde{u}_{1S} } \\ \vdots & \ddots & \vdots \\ {\tilde{u}_{p1} } & \cdots & {\tilde{u}_{pS} } \\ \end{array} } \right]_{m}^{ - 1} = \left[ {\begin{array}{*{20}c} {\tilde{K}_{11} } & \cdots & {\tilde{K}_{1p} } \\ \vdots & \ddots & \vdots \\ {\tilde{K}_{n1} } & \cdots & {\tilde{K}_{np} } \\ \end{array} } \right]_{m} $$
(A3)

The above process is performed for all elements and a stiffness coefficient suitable for each degree of freedom in the global system is assembled.

Appendix B: GappyPOD + E deterministic sampling strategy

The L2 error of the approximation model satisfies the following equation:

$$ \|{\varvec{\Gamma}}^{nl} - {\tilde{\mathbf{\Gamma }}}^{nl}\|_{2} \le \|\left( {{\mathbf{Z}}^{\text{T}} {\varvec{\Omega}}} \right)^{\dag }\|_{2} \|{\varvec{\Gamma}}^{nl} - {\mathbf{\Omega \Omega }}^{\text{T}} {\varvec{\Gamma}}^{nl}\|_{2} $$
(B1)

Here, \( \|{\varvec{\Gamma}}^{nl} - {\mathbf{\Omega \Omega }}^{\text{T}} {\varvec{\Gamma}}^{nl}\|_{2} \) affects the approximation quality of the subspace spanned by Ω, and \( \|\left( {{\mathbf{Z}}^{\text{T}} {\varvec{\Omega}}} \right)^{\dag }\|_{2} \) quantifies the effectiveness of the sampling points.

To achieve robustness and minimize the quantity \( \|\left( {{\mathbf{Z}}^{\text{T}} {\varvec{\Omega}}} \right)^{\dag }\|_{2} \) with a small number of sampling points, Refs. [40] proposed the GappyPOD + E (where E is the eigenvector) deterministic sampling strategy. The GappyPOD + E algorithm is based on the lower bound for the smallest eigenvalues of the updated matrix, which was introduced in [41]. The minimization problem is equal to maximizing the smallest eigenvalue of \( {\mathbf{Z}}^{\text{T}} {\varvec{\Omega}} \).

$$ \|\left( {{\mathbf{Z}}^{\text{T}} {\varvec{\Omega}}} \right)^{\dag }\|_{2} = s_{max} \left( {\left( {{\mathbf{Z}}^{\text{T}} {\varvec{\Omega}}} \right)^{\dag } } \right) = \frac{1}{{s_{min} \left( {{\mathbf{Z}}^{\text{T}} {\varvec{\Omega}}} \right)}} $$
(B2)

where \( s_{max} \left( {\mathbf{B}} \right) \) and \( s_{min} \left( {\mathbf{B}} \right) \) indicate the largest and smallest singular values of B, respectively. The GappyPOD + E algorithm follows the lower bounds of the smallest eigenvalues to select the sampling points that maximize \( s_{min} \left( {\mathbf{B}} \right) \); this is achieved by leveraging the eigenvector corresponding to the smallest eigenvalue. In this paper, the relevant summary is explained, and a detailed explanation and formulation can be found in Refs. [40]. If the authors add a sampling point, then \( {\mathbf{Z}}_{p + 1}^{T} {\varvec{\Omega}} \in {\mathbb{R}}^{{\left( {p + 1} \right) \times N}} \) becomes

$$ {\mathbf{Z}}_{p + 1}^{T} {\varvec{\Omega}} = \left[ {\begin{array}{*{20}c} {{\mathbf{Z}}_{p}^{T} {\varvec{\Omega}} } \\ {\varvec{\omega}_{ + } } \\ \end{array} } \right], $$
(B3)

where \( \varvec{\omega}_{ + } \in {\mathbb{R}}^{1 \times N} \) is the row of Ω for the new sampling point. Zimmermann et al. [46] demonstrated that the change in the singular values of \( {\mathbf{Z}}_{p}^{T} {\varvec{\Omega}} \) to \( {\mathbf{Z}}_{p + 1}^{T} {\varvec{\Omega}} \) can be computed using a symmetric rank-one update.

$$ {\mathbf{Z}}_{p + 1}^{T} {\varvec{\Omega}} = \left[ {\begin{array}{*{20}c} {\varvec{V}_{p} } & 0 \\ 0 & 1 \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {{\varvec{\Sigma}}_{p} } \\ {\varvec{\omega}_{ + } \varvec{W}_{p} } \\ \end{array} } \right]\varvec{W}_{p}^{T} , $$
(B4)

where \( {\mathbf{Z}}_{p}^{T} {\varvec{\Omega}} = \varvec{V}_{p} {\varvec{\Sigma}}_{p} \varvec{W}_{p}^{T} \) is computed using the SVD method. The singular values of \( {\mathbf{Z}}_{p + 1}^{T} {\varvec{\Omega}} \) are calculated by the square roots of the eigenvalues of \( \left( {{\mathbf{Z}}_{p + 1}^{T} {\varvec{\Omega}} } \right)^{T} {\mathbf{Z}}_{p + 1}^{T} {\varvec{\Omega}} \).

$$ \left( {{\mathbf{Z}}_{p + 1}^{T} {\varvec{\Omega}} } \right)^{T} {\mathbf{Z}}_{p + 1}^{T} {\varvec{\Omega}} = \varvec{W}_{p} \left( {{\varvec{\Sigma}}_{p}^{2} + \varvec{W}_{p}^{T}\varvec{\omega}_{ + }^{T}\varvec{\omega}_{ + } \varvec{W}_{p} } \right)\varvec{W}_{p}^{T} = \varvec{W}_{p} {\varvec{\Lambda}}_{p + 1} \varvec{W}_{p}^{T} , $$
(B5)

where the square roots of the eigenvalues of \( {\varvec{\Lambda}}_{p + 1} \) are singular values of \( {\mathbf{Z}}_{p + 1}^{T} {\varvec{\Omega}} \). Let \( \uplambda_{1}^{{\left( {p + 1} \right)}} , \ldots ,\uplambda_{N}^{{\left( {p + 1} \right)}} \) be the eigenvalues of \( {\varvec{\Lambda}}_{p + 1} \) and \( \uplambda_{1}^{\left( p \right)} , \ldots ,\uplambda_{N}^{\left( p \right)} \) be the eigenvalues of \( {\varvec{\Sigma}}_{p}^{2} \), both arranged in descending order. The GappyPOD + E algorithm aims to select a row Ω that maximizes the smallest eigenvalue \( \uplambda_{N}^{{\left( {p + 1} \right)}} \). From Weyl’s theorem [47], we have \( \uplambda_{N}^{{\left( {p + 1} \right)}} \ge \uplambda_{N}^{\left( p \right)} \), which shows that the additional sampling point will not increase the eigenvalues of \( \|\left( {{\mathbf{Z}}_{p + 1}^{T} {\varvec{\Omega}}} \right)^{\dag }\|_{2} \), compared to the eigenvalues of \( \|\left( {{\mathbf{Z}}_{p}^{T} {\varvec{\Omega}}} \right)^{\dag }\|_{2} \).

In Refs. [40], the lower bounds for the eigenvalues of the updated matrices, for selecting the sampling point to rapidly increase the smallest eigenvalue, are calculated using the following equation:

$$ {\text{g}} + \|\bar{\varvec{\omega }}_{ + }\|_{2}^{2} - \sqrt {\left( {{\text{g}} + \|\bar{\varvec{\omega }}_{ + }\|_{2}^{2} } \right)^{2} - 4{\text{g}}\left( {\varvec{z}_{N}^{\left( p \right)^{T}} \bar{\varvec{\omega }}_{ + } } \right)^{2} ,} $$
(B6)

where\( \bar{\varvec{\omega }}_{ + } = \varvec{W}_{p}^{T}\varvec{\omega}_{ + }^{T} \). \( g = \uplambda_{N - 1}^{\left( p \right)} - \uplambda_{N}^{\left( p \right)} \) indicates the eigengap and \( {\varvec{\Sigma}}_{p}^{2} \) is the diagonal matrix, with diagonal elements sorted in descending order; thus, \( \varvec{z}_{N}^{\left( p \right)} \in {\mathbb{R}}^{N} \) is the Nth canonical unit vector of dimension N. A detailed explanation and derivation of the bound equation can be found in Refs. [40].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Lee, J., Cho, H. et al. Reduced-order modeling of nonlinear structural dynamical systems via element-wise stiffness evaluation procedure combined with hyper-reduction. Comput Mech 67, 523–540 (2021). https://doi.org/10.1007/s00466-020-01946-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-020-01946-7

Keywords

Navigation