Skip to main content

Advertisement

Log in

An energy–momentum conserving scheme for geometrically exact shells with drilling DOFs

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

An energy–momentum conserving temporal integration scheme is presented for a recently proposed geometrically exact shell formulation with drilling degrees of freedom. The scheme is based on a novel idea of defining mixed discrete derivatives for holonomic constraint functions with displacements and rotations. By defining general discrete derivative expressions with unknown terms, the mixed discrete derivatives with second-order accuracy are constructed according to deformation modes to satisfy directionality and orthogonality properties simultaneously, thus preserving conservation laws of total energy and momenta. The analysis of shell structures is conducted using the weak form quadrature elements to ensure exact incorporation of constraints and conservation of total energy after discretization, as well as circumvent shear and membrane locking phenomena. Benchmark numerical examples are presented to demonstrate the validity of the present scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Belytschko T, Schoeberle DF (1975) On the unconditional stability of an implicit algorithm for nonlinear structural dynamics. J Appl Mech 42(4):865–869

    Google Scholar 

  2. Gonzalez O, Simo JC (1996) On the stability of symplectic and energy-momentum algorithms for non-linear Hamiltonian systems with symmetry. Comput Methods Appl Mech Eng 134:197–222

    MathSciNet  MATH  Google Scholar 

  3. Kane C, Marsden JE, Ortiz M (1999) Symplectic-energy-momentum preserving variational integrators. J Math Phys 40(7):3353–3371

    MathSciNet  MATH  Google Scholar 

  4. Simo JC, Tarnow N (1992) The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics. Z Angew Math Phys (ZAMP) 43:757–792

    MathSciNet  MATH  Google Scholar 

  5. Simo JC, Tarnow N (1994) A new energy and momentum conserving algorithm for the nonlinear dynamics of shells. Int J Numer Methods Eng 37:2527–2549

    MATH  Google Scholar 

  6. Brank B, Briseghella L, Tonello N, Damjanic FB (1998) On non-linear dynamics of shells: implementation of energy-momentum conserving algorithm for a finite rotation of shell model. Int J Numer Methods Eng 42:409–442

    MathSciNet  MATH  Google Scholar 

  7. Bottasso CL, Bauchao OA, Choi JY (2002) An energy decaying for nonlinear dynamics of shells. Comput Methods Appl Mech Eng 191:3099–3121

    MathSciNet  MATH  Google Scholar 

  8. Romero I, Armero F (2002) Numerical integration of the stiff dynamics of geometrically exact shells: an energy-dissipative momentum-conserving scheme. Int J Numer Methods Eng 54:1043–1086

    MathSciNet  MATH  Google Scholar 

  9. Campello EMB, Pimenta PM, Wriggers P (2011) An exact conserving algorithm for nonlinear dynamics with rotational DOFs and general hyperelasticity. Part 2: shells. Comput Mech 48:195–211

    MathSciNet  MATH  Google Scholar 

  10. Betsch P, Janz A (2016) An energy-momentum consistent method for transient simulations with mixed finite elements developed in the framework of geometrically exact shells. Int J Non-Linear Mech 108:423–455

    MathSciNet  Google Scholar 

  11. Gebhardt CG, Rolfes R (2017) On the nonlinear dynamics of shell structures: combining a mixed finite element formulation and a robust integration scheme. Thin Wall Struct 118:56–72

    Google Scholar 

  12. Gonzalez O (1996) Time integration and discrete Hamiltonian systems. J Nonlinear Sci 6:449–467

    MathSciNet  MATH  Google Scholar 

  13. Gonzalez O (1999) Mechanical systems subject to holonomic constraints: differential-algebraic formulations and conservative integration. Phys D 132:165–174

    MathSciNet  MATH  Google Scholar 

  14. Gonzalez O (2000) Exact energy and momentum conserving algorithms for general models in nonlinear elasticity. Comput Methods Appl Mech Eng 190:1763–1783

    MathSciNet  MATH  Google Scholar 

  15. Lens EV, Cardona A, Géradin M (2004) Energy preserving time integration for constrained multibody systems. Multibody Syst Dyn 11:41–61

    MathSciNet  MATH  Google Scholar 

  16. Leyendecker S, Betsch P, Steinmann P (2004) Energy-preserving integration of constrained Hamiltonian systems—a comparison of approaches. Comput Mech 33:174–185

    MathSciNet  MATH  Google Scholar 

  17. Leyendecker S, Betsch P, Steinmann P (2006) Objective energy-momentum conserving integration for the constrained dynamics of geometrically exact beams. Comput Methods Appl Mech Eng 195:2313–2333

    MathSciNet  MATH  Google Scholar 

  18. Romero I (2012) An analysis of stress formula for energy-momentum methods in nonlinear elastodynamics. Comput Mech 50:603–610

    MathSciNet  MATH  Google Scholar 

  19. Betsch P (2006) Energy-consistent numerical integration of mechanical systems with mixed holonomic and nonholonomic constraints. Comput Methods Appl Mech Eng 196:7027–7035

    MathSciNet  MATH  Google Scholar 

  20. Franke M, Janz A, Schiebl M, Betsch P (2018) An energy momentum consistent integration scheme using a polyconvexity-based framework for nonlinear thermo-elastodynamics. Int J Numer Methods Eng 115:549–557

    MathSciNet  Google Scholar 

  21. Ortigosa R, Franke M, Janz A, Gil AJ, Betsch P (2018) An energy-momentum time integration scheme based on a convex multi-variable framework for non-linear electro-elastodynamics. Comput Methods Appl Mech Eng 339:1–35

    MathSciNet  MATH  Google Scholar 

  22. Zhang R, Zhong H (2019) A weak form quadrature element formulation of geometrically exact shells incorporating drilling degrees of freedom. Comput Mech 63:663–679

    MathSciNet  MATH  Google Scholar 

  23. Zhong H, Yu T (2007) Flexural vibration analysis of an eccentric annular Mindlin plate. Arch Appl Mech 77(4):185–195

    MATH  Google Scholar 

  24. Zhong H, Yu T (2009) A weak form quadrature element method for plane elasticity problems. Appl Math Model 33(10):3801–3814

    MathSciNet  MATH  Google Scholar 

  25. Bellman RE, Casti J (1971) Differential quadrature and long term integration. J Math Anal Appl 34:235–238

    MathSciNet  MATH  Google Scholar 

  26. Striz AG, Chen WL, Bert CW (1994) Static analysis of structures by the quadrature element method (QEM). Int J Solids Struct 31(20):2807–2818

    MATH  Google Scholar 

  27. Zhong H, Zhang R, Xiao N (2014) A quaternion-based weak form quadrature element formulation for spatial geometrically exact beams. Arch Appl Mech 84(12):1825–1840

    Google Scholar 

  28. Zhang R, Zhong H (2015) Weak form quadrature element analysis of geometrically exact shells. Int J Nonlinear Mech 71:63–71

    Google Scholar 

  29. Romero I (2004) The interpolation of rotations and its application to finite element models of geometrically exact rods. Comput Mech 34:121–133

    MathSciNet  MATH  Google Scholar 

  30. Zhang R, Zhong H (2016) A quadrature element formulation of an energy–momentum conserving algorithm for dynamic analysis of geometrically exact beams. Comput Struct 165:96–106

    Google Scholar 

  31. Simo JC, Fox DD (1989) On a stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization. Comput Methods Appl Mech Eng 72:267–304

    MATH  Google Scholar 

  32. Crisfield MA (1997) Non-linear finite element analysis of solids and structures. Volume 2: Advanced topics. Wiley, West Sussex, England

  33. Rebel G (1998) Finite rotation shell theory including drill rotations and its finite element implementations. PhD dissertation, Delft University of Technology

  34. Noether E (1918) Invariante variations sprobleme. Kgl Des d Wiss Math-Phys Klasse 6:235–257

    Google Scholar 

  35. Lanczos C (1970) The variational principle of mechanics, 4th edn. Dover Publications, New York

    MATH  Google Scholar 

  36. Davis PI, Rabinowitz P (1984) Methods of numerical integration, 2nd edn. Academic Press, Orlando

    MATH  Google Scholar 

  37. Canuto C, Hussaini MY, Quarteroni A, Zang TA (2006) Spectral methods. Fundamentals in single domains. Springer, Berlin

    MATH  Google Scholar 

  38. Betsch P, Sänger N (2009) On the use of geometrically exact shells in a conserving framework for flexible multibody dynamics. Comput Methods Appl Mech Eng 198:1609–1630

    MathSciNet  MATH  Google Scholar 

  39. Brezzi F (1974) On the existence, uniqueness and approximation of saddle point problems arising from Lagrangian multipliers. RAIRO Anal Numér 8(R2):129–151

    MathSciNet  MATH  Google Scholar 

  40. Bathe KJ (2006) Finite element procedures. Prentice Hall, New Jersey

    MATH  Google Scholar 

  41. Ibrahimbegović A, Mikdad MA (1998) Finite rotations in dynamics of beams and implicit time-stepping schemes. Int J Numer Methods Eng 41:781–814

    MathSciNet  MATH  Google Scholar 

  42. Zupan E, Saje M, Zupan D (2013) Dynamics of spatial beams in quaternion description based on the Newmark integration scheme. Comput Mech 51:47–64

    MathSciNet  MATH  Google Scholar 

  43. Simo JC, Rifai MS, Fox DD (1992) On a stress resultant geometrically exact shell model. Part VI: conserving algorithm for non-linear dynamics. Int J Numer Methods Eng 34(1):117–164

    MATH  Google Scholar 

  44. Sansour C, Wriggers P, Sansour J (1997) Nonlinear dynamics of shells: theory, finite element formulation and integration schemes. Nonlinear Dyn 13:279–305

    MathSciNet  MATH  Google Scholar 

  45. Zhang J, Liu D, Liu Y (2016) Degenerated shell element with composite implicit time integration scheme for geometric nonlinear analysis. Int J Numer Methods Eng 105:483–513

    MathSciNet  Google Scholar 

  46. Chróścielewski J, Witkowski W (2010) Discrepancies of energy values in dynamics of three intersecting plates. Int J Numer Meth Biomed Eng 26:1188–1202

    MATH  Google Scholar 

Download references

Acknowledgement

The present investigation was performed with the support of the National Natural Science Foundation of China (No. 11702098), the Fundamental Research Funds for the Central Universities (2019MS122) and the China Scholarship Council (201906155033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Run Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Expression of element tangent stiffness matrix

Appendix: Expression of element tangent stiffness matrix

The element stiffness matrix \( {\mathbf{K}}^{(e)} \) consists of three parts corresponding to \( {\mathbf{G}}_{iner}^{(e)} \), \( {\mathbf{G}}_{int}^{(e)} \) and \( {\mathbf{G}}_{C}^{(e)} \) in the element residual force vector as

$$ {\mathbf{K}}^{(e)} = {\mathbf{K}}_{iner}^{(e)} + {\mathbf{K}}_{int}^{(e)} + {\mathbf{K}}_{c}^{(e)} . $$
(A.1)

The element inertial tangent stiffness matrix \( {\mathbf{K}}_{iner}^{(e)} \) can be derived from Eq. (66) as

$$ {\mathbf{K}}_{iner}^{(e)} = \frac{1}{\Delta t}\mathop \sum \limits_{i = 1}^{M} \mathop \sum \limits_{j = 1}^{N} w_{i} w_{j} j_{0mij} \left| {\mathbf{J}} \right|_{ij} {\mathbf{A}}_{ij}^{T} \widetilde{{\mathbf{H}}}_{ij} {\mathbf{A}}_{ij} $$
(A.2)

with

$$ \widetilde{{\mathbf{H}}} = \left[ {\begin{array}{*{20}c} {\frac{2}{\Delta t}{\mathbf{M}}_{\rho 0} } & {0_{3 \times 3} } \\ {0_{3 \times 3} } & {\frac{1}{2}\left( {\widehat{{{\dot{\mathbf{t}}}}}_{n + 1} - \widehat{{{\dot{\mathbf{t}}}}}_{n} } \right){\mathbf{I}}_{\rho 0} \widehat{{\mathbf{t}}}_{n + 1} - \frac{2}{\Delta t}\widehat{{\mathbf{t}}}_{n + 1/2} {\mathbf{I}}_{\rho 0} \widehat{{\mathbf{t}}}_{n + 1} } \\ \end{array} } \right] $$
(A.3)

The element internal stiffness matrix corresponding to Eq. (69) is written as

$$ \begin{aligned} & {\mathbf{K}}_{int}^{(e)} = \sum\limits_{i = 1}^{M} \sum\limits_{j = 1}^{N} w_{i} w_{j} j_{0mij} \left| {\mathbf{J}} \right|_{ij} \left( {\mathbf{B}}_{ij(n + 1/2)}^{T} {\mathbf{D}}_{{ij\left( {t_{n} ,t_{n + 1} } \right)}} {\mathbf{B}}_{ij(n + 1)} \right. \\ &\quad \left. + {\mathbf{C}}_{ij(n + 1/2)}^{T} {\bar{\mathbf{J}}}_{ij}^{T} {\varvec{\Xi}}_{{ij(t_{n} ,t_{n + 1} )}} {\bar{\mathbf{J}}}_{ij} {\mathbf{C}}_{ij(n + 1)} + {\varvec{\Theta}}_{{ij\left( {t_{n} ,t_{n + 1} } \right)}} \right) \end{aligned} $$
(A.4)

where

$$ {\mathbf{D}} = D_{{\varvec{\upchi}}} {\mathbf{N}} $$
(A.5)

is the constitutive matrix while

$$ {\varvec{\Xi}} = \frac{1}{2}\left[ {\begin{array}{*{20}c} {n^{11} {\mathbf{I}}_{3 \times 3} } & {n^{12} {\mathbf{I}}_{3 \times 3} } & {q^{1} {\mathbf{I}}_{3 \times 3} } & {m^{11} {\mathbf{I}}_{3 \times 3} } & {m^{12} {\mathbf{I}}_{3 \times 3} } \\ {n^{12} {\mathbf{I}}_{3 \times 3} } & {n^{22} {\mathbf{I}}_{3 \times 3} } & {q^{2} {\mathbf{I}}_{3 \times 3} } & {m^{12} {\mathbf{I}}_{3 \times 3} } & {m^{22} {\mathbf{I}}_{3 \times 3} } \\ {q^{1} {\mathbf{I}}_{3 \times 3} } & {q^{2} {\mathbf{I}}_{3 \times 3} } & {{\mathbf{0}}_{3 \times 3} } & {{\mathbf{0}}_{3 \times 3} } & {{\mathbf{0}}_{3 \times 3} } \\ {m^{11} {\mathbf{I}}_{3 \times 3} } & {m^{12} {\mathbf{I}}_{3 \times 3} } & {{\mathbf{0}}_{3 \times 3} } & {{\mathbf{0}}_{3 \times 3} } & {{\mathbf{0}}_{3 \times 3} } \\ {m^{12} {\mathbf{I}}_{3 \times 3} } & {m^{22} {\mathbf{I}}_{3 \times 3} } & {{\mathbf{0}}_{3 \times 3} } & {{\mathbf{0}}_{3 \times 3} } & {{\mathbf{0}}_{3 \times 3} } \\ \end{array} } \right] $$
(A.6)
$$ {\varvec{\Theta}}_{{ij\left( {t_{n} ,t_{n + 1} } \right)}} = {\text{diag}}\left[ {\begin{array}{*{20}c} \cdots & {\left[ {\begin{array}{*{20}c} {0_{3 \times 3} } & {0_{3 \times 3} } & {0_{3 \times 1} } \\ {0_{3 \times 3} } & {\overline{{\varvec{\Theta}}} } & {0_{3 \times 1} } \\ {0_{1 \times 3} } & {0_{1 \times 3} } & 0 \\ \end{array} } \right]_{{(ij)(kl)\left( {t_{n} ,t_{n + 1} } \right)}} } & \cdots \\ \end{array} } \right] $$
(A.7)

with

$$ \begin{aligned} & {\bar{\boldsymbol{\varTheta }}}_{{(ij)(kl)\left( {t_{n} ,t_{n + 1} } \right)}}\\ & = \frac{1}{2}\delta_{ik} \delta_{jl} \left( {q_{{\left( {t_{n} ,t_{n + 1} } \right)}}^{1} {\hat{\mathbf{r}}},_{1(n + 1/2)} + q_{{\left( {t_{n} ,t_{n + 1} } \right)}}^{2} {\hat{\mathbf{r}}},_{2(n + 1/2)} } \right)_{ij} {\hat{\mathbf{t}}}_{(kl)(n + 1)} \\ & \quad + \frac{1}{2}\delta_{jl} C_{ik}^{(M)} \left[ \left( {\bar{J}_{11} m_{{\left( {t_{n} ,t_{n + 1} } \right)}}^{11} + \bar{J}_{12} m_{{\left( {t_{n} ,t_{n + 1} } \right)}}^{12} } \right){\hat{\mathbf{r}}},_{1(n + 1/2)} \right. \\ & \quad \left. + \left( {\bar{J}_{11} m_{{\left( {t_{n} ,t_{n + 1} } \right)}}^{12} + \bar{J}_{12} m_{{\left( {t_{n} ,t_{n + 1} } \right)}}^{22} } \right){\hat{\mathbf{r}}},_{2(n + 1/2)} \right]_{ij} {\hat{\mathbf{t}}}_{(kl)(n + 1)} \\ & \quad + \frac{1}{2}\delta_{ik} C_{jl}^{(N)} \left[ \left( {\bar{J}_{21} m_{{\left( {t_{n} ,t_{n + 1} } \right)}}^{11} + \bar{J}_{22} m_{{\left( {t_{n} ,t_{n + 1} } \right)}}^{12} } \right){\hat{\mathbf{r}}},_{1(n + 1/2)} \right. \\ & \quad \left. + \left( {\bar{J}_{21} m_{{\left( {t_{n} ,t_{n + 1} } \right)}}^{12} + \bar{J}_{22} m_{{\left( {t_{n} ,t_{n + 1} } \right)}}^{22} } \right){\hat{\mathbf{r}}},_{2(n + 1/2)} \right]_{ij} {\hat{\mathbf{t}}}_{(kl)(n + 1)} \\ \end{aligned} $$
(A.8)

According to Eq. (80), the element tangent stiffness matrix related to drilling constraint comprises of two parts corresponding to the original and additional terms in discrete derivatives, which has the form

$$ {\mathbf{K}}_{C}^{(e)} = \mathop \sum \limits_{i = 1}^{M} \mathop \sum \limits_{j = 1}^{N} w_{i} w_{j} j_{0mij} \left| {\mathbf{J}} \right|_{ij} \widetilde{{\mathbf{B}}}_{ij}^{T} \left( {{\mathbf{H}}_{ij}^{o} + {\mathbf{H}}_{ij}^{a} } \right)\widetilde{{\mathbf{B}}}_{ij} , $$
(A.9)

where

$$ {\mathbf{H}}^{o} = \left[ {\begin{array}{*{20}c} {\overline{{\mathbf{H}}}_{11}^{o} } & \cdots & {\overline{{\mathbf{H}}}_{14}^{o} } \\ \vdots & \ddots & \vdots \\ {\overline{{\mathbf{H}}}_{41}^{o} } & \cdots & {\overline{{\mathbf{H}}}_{44}^{o} } \\ \end{array} } \right] $$
(A.10)

and

$$ {\mathbf{H}}^{\alpha } = \left[ {\begin{array}{*{20}c} {\overline{{\mathbf{H}}}_{11}^{a} } & \cdots & {\overline{{\mathbf{H}}}_{14}^{a} } \\ \vdots & \ddots & \vdots \\ {\overline{{\mathbf{H}}}_{41}^{a} } & \cdots & {\overline{{\mathbf{H}}}_{44}^{a} } \\ \end{array} } \right] $$
(A.11)

With the expression

$$ \begin{aligned} \Delta & = {\bar{\boldsymbol{\tau }}}_{n + 1}^{T} {\varvec{\Lambda}}_{n + 1} {\bar{\boldsymbol{\tau }}}_{0} - {\bar{\boldsymbol{\tau }}}_{n}^{T} {\varvec{\Lambda}}_{n} {\bar{\boldsymbol{\tau }}}_{0} \\ &\quad - \left( {{\mathbf{r}}_{n + 1} ,_{\alpha } - {\mathbf{r}}_{n} ,_{\alpha } } \right)^{T} {\varvec{\Phi}}_{n + 1/2} {\varvec{\Psi}}_{\alpha (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} \\ & \quad - \left( {{\varvec{\Upsilon}}_{\alpha (n + 1/2)} {\varvec{\Psi}}_{\alpha (n + 1/2)} \varLambda_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} \otimes {\mathbf{t}}_{0} + {\bar{\boldsymbol{\tau }}}_{n + 1/2} \otimes {\bar{\boldsymbol{\tau }}}_{0} } \right):\\ &\quad \left( {{\varvec{\Lambda}}_{n + 1} - {\varvec{\Lambda}}_{n} } \right) \\ \end{aligned} $$
(A.12)

and

$$ {\varvec{\Omega}}_{\alpha } = \frac{{3{\varvec{\uptau}}_{\alpha }^{T} {\varvec{\Lambda}}{\bar{\boldsymbol{\tau }}}_{0} \left( {{\varvec{\uptau}}_{\alpha } \otimes {\varvec{\uptau}}_{\alpha } } \right) - \left\| {{\varvec{\uptau}}_{\alpha } } \right\|^{2} \left( {{\varvec{\Lambda}}{\bar{\boldsymbol{\tau }}}_{0} \otimes {\varvec{\uptau}}_{\alpha } + {\varvec{\uptau}}_{\alpha } \otimes {\varvec{\Lambda}}{\bar{\boldsymbol{\tau }}}_{0} + {\varvec{\uptau}}_{\alpha }^{T} {\varvec{\Lambda}}{\bar{\boldsymbol{\tau }}}_{0} {\mathbf{I}}_{3 \times 3} } \right)}}{{\left\| {{\varvec{\uptau}}_{\alpha } } \right\|^{5} }} $$
(A.13)

the submatrices in (A.10) and (A.11) are presented as follows:

$$ {\bar{\mathbf{H}}}_{\alpha \alpha }^{o} = \lambda_{n + 1} {\varvec{\Phi}}_{n + 1/2} {\varvec{\Omega}}_{\alpha (n + 1/2)} {\varvec{\Phi}}_{n + 1/2} $$
(A.14)
$$ \begin{aligned} {\bar{\mathbf{H}}}_{\alpha 3}^{o} & = \frac{1}{2}\lambda_{n + 1} {\mathbf{t}}_{n + 1/2}^{T} {\varvec{\Psi}}_{\alpha (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} {\hat{\mathbf{t}}}_{n + 1} \\ &\quad - \frac{1}{2}\lambda_{n + 1} {\mathbf{t}}_{n + 1/2} \otimes {\hat{\mathbf{t}}}_{n + 1} {\varvec{\Psi}}_{\alpha (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} \\ & \quad + \frac{1}{2}\lambda_{n + 1} {\varvec{\Phi}}_{n + 1/2} {\varvec{\Omega}}_{\alpha (n + 1/2)} {\varvec{\Upsilon}}_{\alpha (n + 1/2)}^{T} {\hat{\mathbf{t}}}_{n + 1} \\ &\quad - \frac{1}{2}\lambda_{n + 1} {\varvec{\Phi}}_{n + 1/2} {\varvec{\Psi}}_{\alpha (n + 1/2)} {\varvec{\Lambda}}_{n + 1} {\boldsymbol{\hat{\bar{\tau }}}}_{0} {\varvec{\Lambda}}_{n + 1}^{T} \\ \end{aligned} $$
$$ {\bar{\mathbf{H}}}_{\alpha 4}^{o} = {\varvec{\Phi}}_{n + 1/2} {\varvec{\Psi}}_{\alpha (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} $$
$$ \begin{aligned} {\bar{\mathbf{H}}}_{3\alpha }^{o} & = - \frac{1}{2}\lambda_{n + 1} {\hat{\mathbf{t}}}_{n + 1/2} {\varvec{\Psi}}_{\alpha (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} \otimes {\mathbf{t}}_{n + 1/2} \\ &\quad - \frac{1}{2}\lambda_{n + 1} {\mathbf{t}}_{n + 1/2}^{T} {\varvec{\Psi}}_{\alpha (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} {\hat{\mathbf{t}}}_{n + 1/2} \\ & \quad + \frac{1}{4}\lambda_{n + 1} \left( {{\varvec{\Lambda}}_{n + 1} {\boldsymbol{\hat{\bar{\tau }}}}_{0} {\varvec{\Lambda}}_{n + 1}^{T} + {\varvec{\Lambda}}_{n} {\boldsymbol{\hat{\bar{\tau }}}}_{0} {\varvec{\Lambda}}_{n}^{T} } \right){\varvec{\Psi}}_{1(n + 1/2)} {\varvec{\Phi}}_{n + 1/2} \\ &\quad - \frac{1}{2}\lambda_{n + 1} {\hat{\mathbf{t}}}_{n + 1/2} {\varvec{\Upsilon}}_{\alpha (n + 1/2)} {\varvec{\Omega}}_{\alpha (n + 1/2)} {\varvec{\Phi}}_{n + 1/2} \\ \end{aligned} $$
$$ \begin{aligned} {\bar{\mathbf{H}}}_{33}^{o} & = \frac{1}{4}\lambda_{n + 1} \left( {{\varvec{\Lambda}}_{n + 1} {\boldsymbol{\hat{\bar{\tau }}}}_{0} {\varvec{\Lambda}}_{n + 1}^{T} + {\varvec{\Lambda}}_{n} {\boldsymbol{\hat{\bar{\tau }}}}_{0} {\varvec{\Lambda}}_{n}^{T} } \right){\varvec{\Psi}}_{\alpha (n + 1/2)} {\varvec{\Upsilon}}_{\alpha (n + 1/2)}^{T} {\hat{\mathbf{t}}}_{n + 1} \\ &\quad + \frac{1}{2}\lambda_{n + 1} {\boldsymbol{\hat{\bar{\tau }}}}_{n + 1/2} {\varvec{\Lambda}}_{n + 1} {\boldsymbol{\hat{\bar{\tau }}}}_{0} {\varvec{\Lambda}}_{n + 1}^{T} \\ & \quad - \frac{1}{2}\lambda_{n + 1} \left( {\mathbf{t}}_{n + 1} \otimes {\varvec{\Upsilon}}_{\alpha (n + 1/2)} {\varvec{\Psi}}_{\alpha (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} \right. \\ &\quad \left. - {\mathbf{t}}_{n + 1}^{T} {\varvec{\Upsilon}}_{\alpha (n + 1/2)} {\varvec{\Psi}}_{\alpha (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} {\mathbf{I}}_{3 \times 3} \right) \\ & \quad - \frac{1}{2}\lambda_{n + 1} {\hat{\mathbf{t}}}_{n + 1/2} \left( {\mathbf{r}},_{\alpha (n + 1/2)} \otimes {\varvec{\Psi}}_{\alpha (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} \right. \\ &\quad \left. + {\varvec{\Psi}}_{\alpha (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} \otimes {\mathbf{r}},_{\alpha (n + 1/2)} \right){\hat{\mathbf{t}}}_{n + 1} \\ & \quad + \frac{1}{2}\lambda_{n + 1} {\hat{\mathbf{t}}}_{n + 1/2} {\varvec{\Upsilon}}_{\alpha (n + 1/2)} {\varvec{\Omega}}_{\alpha (n + 1/2)} {\varvec{\Upsilon}}_{\alpha (n + 1/2)}^{T} {\hat{\mathbf{t}}}_{n + 1} \\ &\quad - \frac{1}{2}\lambda_{n + 1} {\hat{\mathbf{t}}}_{n + 1/2} {\varvec{\Upsilon}}_{\alpha (n + 1/2)} {\varvec{\Psi}}_{\alpha (n + 1/2)} {\varvec{\Lambda}}_{n + 1} {\boldsymbol{\hat{\bar{\tau }}}}_{0} {\varvec{\Lambda}}_{n + 1}^{T} \\ \end{aligned} $$
$$ {\bar{\mathbf{H}}}_{34}^{o} = \left( {{\hat{\mathbf{t}}}_{n + 1/2} {\varvec{\Upsilon}}_{\alpha (n + 1/2)} {\varvec{\Psi}}_{\alpha (n + 1/2)} - {\boldsymbol{\hat{\bar{\tau }}}}_{n + 1/2} } \right){\varvec{\Lambda}}_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} $$
$$ {\bar{\mathbf{H}}}_{4\alpha }^{o} = {\bar{\boldsymbol{\tau }}}_{0}^{T} {\varvec{\Lambda}}_{n + 1}^{T} {\varvec{\Psi}}_{\alpha (n + 1)} {\varvec{\Phi}}_{n + 1} $$
$$ {\bar{\mathbf{H}}}_{43}^{o} = {\bar{\boldsymbol{\tau }}}_{0}^{T} {\varvec{\Lambda}}_{n + 1}^{T} {\varvec{\Psi}}_{\alpha (n + 1)} {\varvec{\Upsilon}}_{\alpha (n + 1)}^{T} {\hat{\mathbf{t}}}_{n + 1} + {\bar{\boldsymbol{\tau }}}_{0}^{T} {\varvec{\Lambda}}_{n + 1}^{T} {\boldsymbol{\hat{\bar{\tau }}}}_{n + 1} $$
$$ {\bar{\mathbf{H}}}_{\alpha \beta }^{o} = {\mathbf{0}}_{3 \times 3} ,\quad {\bar{\mathbf{H}}}_{44}^{o} = 0 $$

for case (ii) in Table 1

$$ \begin{aligned} {\mathbf{H}}_{\alpha \alpha }^{a} & = \frac{{\lambda_{n + 1} \text{sgn} (\left\| {{\mathbf{r}}_{n + 1} ,_{\alpha } } \right\|^{2} - \left\| {{\mathbf{r}}_{n} ,_{\alpha } } \right\|^{2} )}}{{\sum\limits_{\gamma = 1}^{2} {\left| {\left\| {{\mathbf{r}}_{n + 1} ,_{\gamma } } \right\|^{2} - \left\| {{\mathbf{r}}_{n} ,_{\gamma } } \right\|^{2} } \right|} }}\left[ \Delta {\mathbf{I}}_{3 \times 3} + {\mathbf{r}}_{n + 1/2} ,_{\alpha }\right. \\ &\quad \left. \otimes \left( {{\varvec{\Phi}}_{n + 1} {\varvec{\Psi}}_{\alpha (n + 1)} {\varvec{\Lambda}}_{n + 1} - {\varvec{\Phi}}_{n + 1/2} {\varvec{\Psi}}_{\alpha (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} } \right){\bar{\boldsymbol{\tau }}}_{0} \right. \\ & \quad - {\mathbf{r}}_{n + 1/2} ,_{\alpha } \otimes \left( {{\mathbf{r}}_{n + 1} ,_{\alpha } - {\mathbf{r}}_{n} ,_{\alpha } } \right){\varvec{\Phi}}_{n + 1/2} {\varvec{\Omega}}_{\alpha (n + 1/2)} {\varvec{\Phi}}_{n + 1/2} \\ &\quad + {\mathbf{t}}_{n + 1/2}^{T} {\varvec{\Psi}}_{\alpha (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} {\mathbf{r}}_{n + 1/2} ,_{\alpha } \otimes \left( {{\mathbf{t}}_{n + 1} - {\mathbf{t}}_{n} } \right) \\ & \quad + {\bar{\boldsymbol{\tau }}}_{0}^{T} {\varvec{\Lambda}}_{n + 1/2}^{T} {\varvec{\Psi}}_{\alpha (n + 1/2)} \left( {{\mathbf{t}}_{n + 1} - {\mathbf{t}}_{n} } \right){\mathbf{r}}_{n + 1/2} ,_{\alpha } \otimes {\mathbf{t}}_{n + 1/2} \\ &\quad + {\mathbf{r}}_{n + 1/2} ,_{\alpha } \otimes \left( {{\mathbf{t}}_{n + 1} - {\mathbf{t}}_{n} } \right){\varvec{\Upsilon}}_{\alpha (n + 1/2)} {\varvec{\Omega}}_{\alpha (n + 1/2)} {\varvec{\Phi}}_{n + 1/2} \\ & \quad \left. { - {\mathbf{r}}_{n + 1/2} ,_{\alpha } \otimes \left( {{\varvec{\Lambda}}_{n + 1} - {\varvec{\Lambda}}_{n} } \right){\bar{\boldsymbol{\tau }}}_{0} {\varvec{\Psi}}_{1(n + 1/2)} {\varvec{\Phi}}_{n + 1/2} } \right] \\ &\quad - 4\lambda_{n + 1} \Delta {\mathbf{r}}_{n + 1/2} ,_{\alpha } \otimes {\mathbf{r}}_{n + 1} ,_{\alpha } / \\ &\quad \left( {\sum\limits_{\gamma = 1}^{2} {\left| {\left\| {{\mathbf{r}}_{n + 1} ,_{\gamma } } \right\|^{2} - \left\| {{\mathbf{r}}_{n} ,_{\gamma } } \right\|^{2} } \right|} } \right)^{2} \\ \end{aligned} $$
$$ \begin{aligned} {\mathbf{H}}_{\alpha \beta }^{a} & = \frac{{\lambda_{n + 1} \text{sgn} (\left\| {{\mathbf{r}}_{n + 1} ,_{\alpha } } \right\|^{2} - \left\| {{\mathbf{r}}_{n} ,_{\alpha } } \right\|^{2} )}}{{\sum\limits_{\gamma = 1}^{2} {\left| {\left\| {{\mathbf{r}}_{n + 1} ,_{\gamma } } \right\|^{2} - \left\| {{\mathbf{r}}_{n} ,_{\gamma } } \right\|^{2} } \right|} }} \\ &\quad \left[ {{\mathbf{r}}_{n + 1/2} ,_{\alpha } \otimes \left( {{\varvec{\Phi}}_{n + 1} {\varvec{\Psi}}_{\beta (n + 1)} {\varvec{\Lambda}}_{n + 1} - {\varvec{\Phi}}_{n + 1/2} {\varvec{\Psi}}_{\beta (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} } \right){\bar{\boldsymbol{\tau }}}_{0} } \right. \\ & \quad - {\mathbf{r}}_{n + 1/2} ,_{\alpha } \otimes \left( {{\mathbf{r}}_{n + 1} ,_{\beta } - {\mathbf{r}}_{n} ,_{\beta } } \right){\varvec{\Phi}}_{n + 1/2} {\varvec{\Omega}}_{\beta (n + 1/2)} {\varvec{\Phi}}_{n + 1/2} \\ &\quad + {\mathbf{t}}_{n + 1/2}^{T} {\varvec{\Psi}}_{\beta (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} {\mathbf{r}}_{n + 1/2} ,_{\alpha } \otimes \left( {{\mathbf{t}}_{n + 1} - {\mathbf{t}}_{n} } \right) \\ & \quad + {\bar{\boldsymbol{\tau }}}_{0}^{T} {\varvec{\Lambda}}_{n + 1/2}^{T} {\varvec{\Psi}}_{2(n + 1/2)} \left( {{\mathbf{t}}_{n + 1} - {\mathbf{t}}_{n} } \right){\mathbf{r}}_{n + 1/2} ,_{\alpha } \otimes {\mathbf{t}}_{n + 1/2} \\ &\quad {\mathbf{ + r}}_{n + 1/2} ,_{\alpha } \otimes \left( {{\mathbf{t}}_{n + 1} - {\mathbf{t}}_{n} } \right){\varvec{\Upsilon}}_{\beta (n + 1/2)} {\varvec{\Omega}}_{\beta (n + 1/2)} {\varvec{\Phi}}_{n + 1/2} \\ & \quad \left. { - {\mathbf{r}}_{n + 1/2} ,_{\alpha } \otimes \left( {{\varvec{\Lambda}}_{n + 1} - {\varvec{\Lambda}}_{n} } \right){\bar{\boldsymbol{\tau }}}_{0} {\varvec{\Psi}}_{\beta (n + 1/2)} {\varvec{\Phi}}_{n + 1/2} } \right] \\ & \quad + 4\lambda_{n + 1} \text{sgn} \left( {(\left\| {{\mathbf{r}}_{n + 1} ,_{\alpha } } \right\|^{2} - \left\| {{\mathbf{r}}_{n} ,_{\alpha } } \right\|^{2} )(\left\| {{\mathbf{r}}_{n + 1} ,_{\beta } } \right\|^{2} - \left\| {{\mathbf{r}}_{n} ,_{\beta } } \right\|^{2} )} \right)\\ &\quad Z_{n + 1/2} {\mathbf{r}}_{n + 1/2} ,_{\alpha } \otimes {\mathbf{r}}_{n + 1} ,_{\beta } /\sum\limits_{\gamma = 1}^{2} {\left| {\left\| {{\mathbf{r}}_{n + 1} ,_{\gamma } } \right\|^{2} - \left\| {{\mathbf{r}}_{n} ,_{\gamma } } \right\|^{2} } \right|} \\ \end{aligned} $$
(A.15)
$$ \begin{aligned} {\mathbf{H}}_{\alpha 3}^{a} & = \frac{{\lambda_{n + 1} \text{sgn} (\left\| {{\mathbf{r}}_{n + 1} ,_{\alpha } } \right\|^{2} - \left\| {{\mathbf{r}}_{n} ,_{\alpha } } \right\|^{2} )}}{{\sum\limits_{\gamma = 1}^{2} {\left| {\left\| {{\mathbf{r}}_{n + 1} ,_{\gamma } } \right\|^{2} - \left\| {{\mathbf{r}}_{n} ,_{\gamma } } \right\|^{2} } \right|} }}\\ &\quad \left\{ {{\mathbf{r}}_{n + 1/2} ,_{\alpha } \otimes } \right.\left[ {{\hat{\mathbf{t}}}_{n + 1} \left( {{\varvec{\Upsilon}}_{\alpha (n + 1)} {\varvec{\Psi}}_{\alpha (n + 1)} + {\varvec{\Upsilon}}_{\beta (n + 1)} {\varvec{\Psi}}_{\beta (n + 1)} } \right) - {\boldsymbol{\hat{\bar{\tau }}}}_{n + 1} } \right]{\varvec{\Lambda}}_{n + 1} {\bar{\boldsymbol{\tau }}}_{0} \\ & \quad - {\mathbf{r}}_{n + 1/2} ,_{\alpha } \otimes \left( {{\mathbf{r}}_{n + 1} ,_{\alpha } - {\mathbf{r}}_{n} ,_{\alpha } } \right) \\ & \quad \left( {{\mathbf{t}}_{n + 1/2}^{T} {\varvec{\Psi}}_{\alpha (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} {\mathbf{I}}_{3 \times 3} + {\mathbf{t}}_{n + 1/2} \otimes {\varvec{\Psi}}_{\alpha (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} } \right){\hat{\mathbf{t}}}_{n + 1} \\ & \quad + {\mathbf{r}}_{n + 1/2} ,_{\alpha } \otimes \left( {{\mathbf{r}}_{n + 1} ,_{\alpha } - {\mathbf{r}}_{n} ,_{\alpha } } \right){\varvec{\Phi}}_{n + 1/2} \\ &\quad \left( {{\varvec{\Psi}}_{\alpha (n + 1/2)} {\varvec{\Lambda}}_{n + 1} {\boldsymbol{\hat{\bar{\tau }}}}_{0} {\varvec{\Lambda}}_{n + 1}^{T} {\mathbf{ - \varOmega }}_{\alpha (n + 1/2)} {\varvec{\Upsilon}}_{\alpha (n + 1/2)} {\hat{\mathbf{t}}}_{n + 1} } \right) \\ & \quad + {\mathbf{r}}_{n + 1/2} ,_{\alpha } \otimes \left( {{\mathbf{r}}_{n + 1} ,_{\beta } - {\mathbf{r}}_{n} ,_{\beta } } \right)\\ &\quad \left( {{\mathbf{t}}_{n + 1/2}^{T} {\varvec{\Psi}}_{\beta (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} {\mathbf{I}}_{3 \times 3} + {\mathbf{t}}_{n + 1/2} \otimes {\varvec{\Psi}}_{\beta (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} } \right){\hat{\mathbf{t}}}_{n + 1} \\ & \quad + {\mathbf{r}}_{n + 1/2} ,_{\alpha } \otimes \left( {{\mathbf{r}}_{n + 1} ,_{\beta } - {\mathbf{r}}_{n} ,_{\beta } } \right){\varvec{\Phi}}_{n + 1/2} \\ &\quad \left( {{\varvec{\Psi}}_{\beta (n + 1/2)} {\varvec{\Lambda}}_{n + 1} {\boldsymbol{\hat{\bar{\tau }}}}_{0} {\varvec{\Lambda}}_{n + 1}^{T} {\mathbf{ - \varOmega }}_{\beta (n + 1/2)} {\varvec{\Upsilon}}_{\beta (n + 1/2)} {\hat{\mathbf{t}}}_{n + 1} } \right) \\ & \quad - {\mathbf{r}}_{n + 1/2} ,_{\alpha } \otimes \left( {{\mathbf{t}}_{n + 1} - {\mathbf{t}}_{n} } \right) \\ &\quad \left( {\mathbf{r}}_{n + 1/2} ,_{\beta } \otimes {\varvec{\Psi}}_{\beta (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} + {\varvec{\Psi}}_{\beta (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} \right. \\ &\quad \left. \otimes {\mathbf{r}}_{n + 1/2} ,_{\beta } - {\varvec{\Upsilon}}_{\beta (n + 1/2)} {\varvec{\Omega}}_{\beta (n + 1/2)} {\varvec{\Upsilon}}_{\beta (n + 1/2)}^{T} \right){\hat{\mathbf{t}}}_{n + 1} \\ & \quad - {\mathbf{r}}_{n + 1/2} ,_{\alpha } \otimes \left( {{\mathbf{t}}_{n + 1} - {\mathbf{t}}_{n} } \right) \\ &\quad \left( {\mathbf{r}}_{n + 1/2} ,_{\alpha } \otimes {\varvec{\Psi}}_{\alpha (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} \right. \\ &\quad \left. + {\varvec{\Psi}}_{\alpha (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} \otimes {\mathbf{r}}_{n + 1/2} ,_{\alpha } - {\varvec{\Upsilon}}_{\alpha (n + 1/2)} {\varvec{\Omega}}_{\alpha (n + 1/2)} {\varvec{\Upsilon}}_{\alpha (n + 1/2)}^{T} \right){\hat{\mathbf{t}}}_{n + 1} \\ & \quad - {\mathbf{r}}_{n + 1/2} ,_{\alpha } \otimes \left( {{\mathbf{t}}_{n + 1} - {\mathbf{t}}_{n} } \right) \\ &\quad \left( {{\varvec{\Upsilon}}_{\alpha (n + 1/2)} {\varvec{\Psi}}_{\alpha (n + 1/2)} + {\varvec{\Upsilon}}_{\beta (n + 1/2)} {\varvec{\Psi}}_{\beta (n + 1/2)} } \right){\varvec{\Lambda}}_{n + 1} {\boldsymbol{\hat{\bar{\tau }}}}_{0} {\varvec{\Lambda}}_{n + 1}^{T} \\ &\quad - 2{\mathbf{r}}_{n + 1/2} ,_{\alpha } \otimes {\varvec{\Lambda}}_{n + 1} {\boldsymbol{\hat{\bar{\tau }}}}_{0} {\varvec{\Lambda}}_{n + 1}^{T} {\bar{\boldsymbol{\tau }}}_{n + 1/2} \\ & \quad - {\mathbf{r}}_{n + 1/2} ,_{\alpha } \otimes \left( {{\varvec{\Lambda}}_{n + 1} - {\varvec{\Lambda}}_{n} } \right){\bar{\boldsymbol{\tau }}}_{0} \\ &\quad \left( {{\varvec{\Psi}}_{\alpha (n + 1/2)} {\varvec{\Upsilon}}_{\alpha (n + 1/2)}^{T} + {\varvec{\Psi}}_{\beta (n + 1/2)} {\varvec{\Upsilon}}_{\beta (n + 1/2)}^{T} } \right){\hat{\mathbf{t}}}_{n + 1} \\ & \quad + 2{\mathbf{r}}_{n + 1/2} ,_{\alpha } \otimes {\varvec{\Lambda}}_{n + 1} {\hat{\mathbf{t}}}_{0} {\varvec{\Lambda}}_{n + 1}^{T} \\ & \quad \left. \left( {{\varvec{\Upsilon}}_{\beta (n + 1/2)} {\varvec{\Psi}}_{\beta (n + 1/2)} + {\varvec{\Upsilon}}_{\alpha (n + 1/2)} {\varvec{\Psi}}_{\alpha (n + 1/2)} } \right)\varLambda_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} \right\} \\ \end{aligned} $$
$$ {\mathbf{H}}_{\alpha 4}^{a} = \frac{{2\lambda_{n + 1} \text{sgn} (\left\| {{\mathbf{r}}_{n + 1} ,_{\alpha } } \right\|^{2} - \left\| {{\mathbf{r}}_{n} ,_{\alpha } } \right\|^{2} )\Delta {\mathbf{r}}_{n + 1/2} ,_{\alpha } }}{{\sum\limits_{\gamma = 1}^{2} {\left| {\left\| {{\mathbf{r}}_{n + 1} ,_{\gamma } } \right\|^{2} - \left\| {{\mathbf{r}}_{n} ,_{\gamma } } \right\|^{2} } \right|} }} $$
$$ \begin{aligned} {\mathbf{H}}_{3\alpha }^{a} & = {\mathbf{H}}_{33}^{a} = {\mathbf{0}}_{3 \times 3} ; \\ {\mathbf{H}}_{4\alpha }^{a} & = {\mathbf{H}}_{43}^{a} = {\mathbf{0}}_{1 \times 3} ; \\ {\mathbf{H}}_{34}^{a} & = {\mathbf{0}}_{3 \times 1} ; \\ {\mathbf{H}}_{44}^{a} & = 0; \\ \end{aligned} $$

for case (iii) in Table 1

$$ \begin{aligned} {\mathbf{H}}_{\beta \beta }^{a} & = \frac{{\lambda_{n + 1} }}{{2\left( {{\mathbf{e}}_{j}^{n + 1} \cdot {\mathbf{r}}_{n + 1} ,_{\beta } - {\mathbf{e}}_{j}^{n} \cdot {\mathbf{r}}_{n} ,_{\beta } } \right)}} \\ &\quad \left[ {2{\mathbf{e}}_{j}^{n + 1/2} \otimes \left( {{\varvec{\Phi}}_{n + 1} {\varvec{\Psi}}_{\beta (n + 1)} {\varvec{\Lambda}}_{n + 1} - {\varvec{\Phi}}_{n + 1/2} {\varvec{\Psi}}_{\beta (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} } \right){\bar{\boldsymbol{\tau }}}_{0} } \right. \\ & \quad - {\mathbf{e}}_{j}^{n + 1/2} \otimes {\varvec{\Phi}}_{n + 1/2} {\varvec{\Omega}}_{\beta (n + 1/2)} {\varvec{\Phi}}_{n + 1/2} \left( {{\mathbf{r}}_{n + 1} ,_{\beta } - {\mathbf{r}}_{n} ,_{\beta } } \right) \\ &\quad + {\mathbf{t}}_{n + 1/2}^{T} {\varvec{\Psi}}_{\beta (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} {\mathbf{e}}_{j}^{n + 1/2} \otimes \left( {{\mathbf{t}}_{n + 1} - {\mathbf{t}}_{n} } \right) \\ & \quad + {\bar{\boldsymbol{\tau }}}_{0}^{T} {\varvec{\Lambda}}_{n + 1/2}^{T} {\varvec{\Psi}}_{\beta (n + 1/2)} \left( {{\mathbf{t}}_{n + 1} - {\mathbf{t}}_{n} } \right){\mathbf{e}}_{j}^{n + 1/2} \otimes {\mathbf{t}}_{n + 1/2} \\ &\quad + {\mathbf{e}}_{j}^{n + 1/2} \otimes \left( {{\mathbf{t}}_{n + 1} - {\mathbf{t}}_{n} } \right){\varvec{\Upsilon}}_{\beta (n + 1/2)} {\varvec{\Omega}}_{\beta (n + 1/2)} {\varvec{\Phi}}_{n + 1/2} \\ & \quad \left. { - {\mathbf{e}}_{j}^{n + 1/2} \otimes {\varvec{\Phi}}_{n + 1/2} {\varvec{\Psi}}_{\beta (n + 1/2)} \left( {{\varvec{\Lambda}}_{n + 1} - {\varvec{\Lambda}}_{n} } \right){\bar{\boldsymbol{\tau }}}_{0} } \right] \\ & \quad - \lambda_{n + 1} \Delta {\mathbf{e}}_{j}^{n + 1/2} \otimes {\mathbf{e}}_{i}^{n + 1} /\left( {{\mathbf{e}}_{j}^{n + 1} \cdot {\mathbf{r}}_{n + 1} ,_{\beta } - {\mathbf{e}}_{j}^{n} \cdot {\mathbf{r}}_{n} ,_{\beta } } \right)^{2} \\ \end{aligned} $$
$$ \begin{aligned} {\mathbf{H}}_{\beta \alpha }^{a} & = \frac{{\lambda_{n + 1} }}{{2\left( {{\mathbf{e}}_{j}^{n + 1} \cdot {\mathbf{r}}_{n + 1} ,_{\beta } - {\mathbf{e}}_{j}^{n} \cdot {\mathbf{r}}_{n} ,_{\beta } } \right)}} \\ &\quad \left[ {2{\mathbf{e}}_{j}^{n + 1/2} \otimes \left( {{\varvec{\Phi}}_{n + 1} {\varvec{\Psi}}_{\alpha (n + 1)} {\varvec{\Lambda}}_{n + 1} - {\varvec{\Phi}}_{n + 1/2} {\varvec{\Psi}}_{\alpha (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} } \right){\bar{\boldsymbol{\tau }}}_{0} } \right. \\ & \quad - {\mathbf{e}}_{j}^{n + 1/2} \otimes \left( {{\mathbf{r}}_{n + 1} ,_{\alpha } - {\mathbf{r}}_{n} ,_{\alpha } } \right){\varvec{\Phi}}_{n + 1/2} {\varvec{\Omega}}_{\alpha (n + 1/2)} {\varvec{\Phi}}_{n + 1/2} \\ &\quad + {\mathbf{t}}_{n + 1/2}^{T} {\varvec{\Psi}}_{\alpha (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} {\mathbf{e}}_{j}^{n + 1/2} \otimes \left( {{\mathbf{t}}_{n + 1} - {\mathbf{t}}_{n} } \right) \\ & \quad + {\bar{\boldsymbol{\tau }}}_{0}^{T} {\varvec{\Lambda}}_{n + 1/2}^{T} {\varvec{\Psi}}_{\alpha (n + 1/2)} \left( {{\mathbf{t}}_{n + 1} - {\mathbf{t}}_{n} } \right){\mathbf{e}}_{j}^{n + 1/2} \otimes {\mathbf{t}}_{n + 1/2} \\ &\quad + {\mathbf{e}}_{j}^{n + 1/2} \otimes \left( {{\mathbf{t}}_{n + 1} - {\mathbf{t}}_{n} } \right){\varvec{\Upsilon}}_{\alpha (n + 1/2)} {\varvec{\Omega}}_{\alpha (n + 1/2)} {\varvec{\Phi}}_{n + 1/2} \\ & \quad \left. { - {\mathbf{e}}_{j}^{n + 1/2} \otimes {\varvec{\Phi}}_{n + 1/2} {\varvec{\Psi}}_{\alpha (n + 1/2)} \left( {{\varvec{\Lambda}}_{n + 1} - {\varvec{\Lambda}}_{n} } \right){\bar{\boldsymbol{\tau }}}_{0} } \right] \\ \end{aligned} $$
$$ \begin{aligned} {\mathbf{H}}_{\beta 3}^{a} & = \frac{{\lambda_{n + 1} }}{{2\left( {{\mathbf{e}}_{j}^{n + 1} \cdot {\mathbf{r}}_{n + 1} ,_{\beta } - {\mathbf{e}}_{j}^{n} \cdot {\mathbf{r}}_{n} ,_{\beta } } \right)}}\left\{ { - \Delta {\hat{\mathbf{e}}}_{j}^{n + 1} - 2{\mathbf{e}}_{j}^{n + 1/2} \otimes } \right. \\ &\quad \left[ {{\hat{\mathbf{t}}}_{n + 1} \left( {{\varvec{\Upsilon}}_{\alpha (n + 1)} {\varvec{\Psi}}_{\alpha (n + 1)} + {\varvec{\Upsilon}}_{\beta (n + 1)} {\varvec{\Psi}}_{\beta (n + 1)} } \right) - {\boldsymbol{\hat{\bar{\tau }}}}_{n + 1} } \right]{\varvec{\Lambda}}_{n + 1} {\bar{\boldsymbol{\tau }}}_{0} \\ & \quad - {\mathbf{e}}_{j}^{n + 1/2} \otimes \left( {{\mathbf{r}}_{(n + 1)} ,_{\beta } - {\mathbf{r}}_{n} ,_{\beta } } \right)\left( {\mathbf{t}}_{n + 1/2}^{T} {\varvec{\Psi}}_{\beta (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} {\mathbf{I}}_{3 \times 3} \right. \\ &\quad \left. + {\mathbf{t}}_{n + 1/2} \otimes {\varvec{\Psi}}_{\beta (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} \right){\hat{\mathbf{t}}}_{n + 1} \\ & \quad + {\mathbf{e}}_{j}^{n + 1/2} \otimes \left( {{\mathbf{r}}_{(n + 1)} ,_{\beta } - {\mathbf{r}}_{n} ,_{\beta } } \right){\varvec{\Phi}}_{n + 1/2} \\ &\quad \left( {{\varvec{\Psi}}_{\beta (n + 1/2)} {\varvec{\Lambda}}_{n + 1} {\boldsymbol{\hat{\bar{\tau }}}}_{0} {\varvec{\Lambda}}_{n + 1}^{T} {\mathbf{ - \varOmega }}_{\beta (n + 1/2)} {\varvec{\Upsilon}}_{\beta (n + 1/2)}^{T} {\hat{\mathbf{t}}}_{n + 1} } \right) \\ & \quad - {\mathbf{e}}_{j}^{n + 1/2} \otimes \left( {{\mathbf{r}}_{(n + 1)} ,_{\alpha } - {\mathbf{r}}_{n} ,_{\alpha } } \right) \\&\quad \left( {{\mathbf{t}}_{n + 1/2}^{T} {\varvec{\Psi}}_{\alpha (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} {\mathbf{I}}_{3 \times 3} + {\mathbf{t}}_{n + 1/2} \otimes {\varvec{\Psi}}_{\alpha (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} } \right){\hat{\mathbf{t}}}_{n + 1} \\ & \quad + {\mathbf{e}}_{j}^{n + 1/2} \otimes \left( {{\mathbf{r}}_{(n + 1)} ,_{\alpha } - {\mathbf{r}}_{n} ,_{\alpha } } \right){\varvec{\Phi}}_{n + 1/2} \\ &\quad \left( {{\varvec{\Psi}}_{\alpha (n + 1/2)} {\varvec{\Lambda}}_{n + 1} {\boldsymbol{\hat{\bar{\tau }}}}_{0} {\varvec{\Lambda}}_{n + 1}^{T} {\mathbf{ - \varOmega }}_{\alpha (n + 1/2)} {\varvec{\Upsilon}}_{\alpha (n + 1/2)}^{T} {\hat{\mathbf{t}}}_{n + 1} } \right) \\ & \quad - {\mathbf{e}}_{j}^{n + 1/2} \otimes \left( {\mathbf{t}}_{n + 1} - {\mathbf{t}}_{n} \right) \left( {\mathbf{r}}_{n + 1/2} ,_{\alpha } \otimes {\varvec{\Psi}}_{\alpha (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} \right. \\ &\quad \left. + {\varvec{\Psi}}_{\alpha (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} \otimes {\mathbf{r}}_{n + 1/2} ,_{\alpha } - {\varvec{\Upsilon}}_{\alpha (n + 1/2)} {\varvec{\Omega}}_{\alpha (n + 1/2)} {\varvec{\Upsilon}}_{\alpha (n + 1/2)}^{T} \right){\hat{\mathbf{t}}}_{n + 1} \\ & \quad - {\mathbf{e}}_{j}^{n + 1/2} \otimes \left( {\mathbf{t}}_{n + 1} - {\mathbf{t}}_{n} \right)\left( {\mathbf{r}}_{(n + 1/2)} ,_{\beta } \otimes {\varvec{\Psi}}_{\beta (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} \right.\\ &\quad \left. + {\varvec{\Psi}}_{\beta (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} \otimes {\mathbf{r}}_{n + 1/2} ,_{\beta } - {\varvec{\Upsilon}}_{\beta (n + 1/2)} {\varvec{\Omega}}_{\beta (n + 1/2)} {\varvec{\Upsilon}}_{\beta (n + 1/2)}^{T} \right){\hat{\mathbf{t}}}_{n + 1} \\ & \quad + {\mathbf{e}}_{j}^{n + 1/2} \otimes \left( {\mathbf{t}}_{n + 1} - {\mathbf{t}}_{n} \right)\left( {\varvec{\Upsilon}}_{\alpha (n + 1/2)} {\varvec{\Psi}}_{\alpha (n + 1/2)} \right. \\ &\quad \left. + {\varvec{\Upsilon}}_{\beta (n + 1/2)} {\varvec{\Psi}}_{\beta (n + 1/2)} \right){\varvec{\Lambda}}_{n + 1} {\boldsymbol{\hat{\bar{\tau }}}}_{0} {\varvec{\Lambda}}_{n + 1}^{T} \\ & \quad - {\mathbf{e}}_{j}^{n + 1/2} \otimes \left( {{\varvec{\Lambda}}_{n + 1} - {\varvec{\Lambda}}_{n} } \right){\bar{\boldsymbol{\tau }}}_{0} \\ &\quad \left( {{\varvec{\Psi}}_{\beta (n + 1/2)} {\varvec{\Upsilon}}_{\beta (n + 1/2)}^{T} - {\varvec{\Psi}}_{\alpha (n + 1/2)} {\varvec{\Upsilon}}_{\alpha (n + 1/2)}^{T} } \right){\hat{\mathbf{t}}}_{n + 1} \\ & \quad - 2{\mathbf{e}}_{j}^{n + 1/2} \otimes {\varvec{\Lambda}}_{n + 1} {\hat{\mathbf{t}}}_{0} {\varvec{\Lambda}}_{n + 1}^{T} \\ &\quad \left( {{\varvec{\Upsilon}}_{\alpha (n + 1/2)} {\varvec{\Psi}}_{\alpha (n + 1/2)} + {\varvec{\Upsilon}}_{\beta (n + 1/2)} {\varvec{\Psi}}_{\beta (n + 1/2)} } \right)\varLambda_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} \\ & \quad \left. { - 2{\mathbf{e}}_{j}^{n + 1/2} \otimes {\varvec{\Lambda}}_{n + 1} {\boldsymbol{\hat{\bar{\tau }}}}_{0} {\varvec{\Lambda}}_{n + 1}^{T} {\bar{\boldsymbol{\tau }}}_{n + 1/2} } \right\} - \lambda_{n + 1} \Delta {\mathbf{e}}_{j}^{n + 1/2} \\ &\quad \otimes \left( {{\mathbf{e}}_{j}^{n + 1} \times {\mathbf{r}}_{n + 1} ,_{\beta } } \right)/\left( {{\mathbf{e}}_{j}^{n + 1} \cdot {\mathbf{r}}_{n + 1} ,_{\beta } - {\mathbf{e}}_{j}^{n} \cdot {\mathbf{r}}_{n} ,_{\beta } } \right)^{2} \\ \end{aligned} $$
(A.16)
$$ \begin{aligned} {\mathbf{H}}_{3\beta }^{a} & = \frac{{\lambda_{n + 1} }}{{2\left( {{\mathbf{e}}_{j}^{n + 1} \cdot {\mathbf{r}}_{n + 1} ,_{\beta } - {\mathbf{e}}_{j}^{n} \cdot {\mathbf{r}}_{n} ,_{\beta } } \right)}}\\ &\quad \left[ {{\hat{\mathbf{r}}}_{n + 1/2} ,_{\beta } {\mathbf{e}}_{j}^{n + 1/2} \otimes \left( {{\varvec{\Phi}}_{n + 1/2} {\varvec{\Psi}}_{\beta (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} {\mathbf{ - \varPhi }}_{n + 1} {\varvec{\Psi}}_{\beta (n + 1)} {\varvec{\Lambda}}_{n + 1} } \right){\bar{\boldsymbol{\tau }}}_{0} } \right. \\ & \quad + \frac{\Delta }{2}\left( {{\varvec{\Lambda}}_{n + 1} {\hat{\mathbf{e}}}_{j} {\varvec{\Lambda}}_{n + 1}^{T} + {\varvec{\Lambda}}_{n} {\hat{\mathbf{e}}}_{j} {\varvec{\Lambda}}_{n}^{T} } \right) + {\hat{\mathbf{r}}}_{n + 1/2} ,_{\beta } {\mathbf{e}}_{j}^{n + 1/2} \\ &\quad \otimes {\varvec{\Phi}}_{n + 1/2} {\varvec{\Omega}}_{\beta (n + 1/2)} {\varvec{\Phi}}_{n + 1/2} \left( {{\mathbf{r}}_{n + 1} ,_{\beta } - {\mathbf{r}}_{n} ,_{\beta } } \right) \\ & \quad - {\mathbf{t}}_{n + 1/2}^{T} {\varvec{\Psi}}_{\beta (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} {\hat{\mathbf{r}}}_{n + 1/2} ,_{\beta } {\mathbf{e}}_{j}^{n + 1/2} \\ &\quad \otimes \left( {{\mathbf{t}}_{n + 1} - {\mathbf{t}}_{n} } \right) - {\bar{\boldsymbol{\tau }}}_{0}^{T} {\varvec{\Lambda}}_{n + 1/2}^{T} {\varvec{\Psi}}_{1(n + 1/2)} \left( {{\mathbf{t}}_{n + 1} - {\mathbf{t}}_{n} } \right){\hat{\mathbf{r}}}_{n + 1/2} ,_{\beta } {\mathbf{e}}_{j}^{n + 1/2} \otimes {\mathbf{t}}_{n + 1/2} \\ & \quad - {\hat{\mathbf{r}}}_{n + 1/2} ,_{\beta } {\mathbf{e}}_{j}^{n + 1/2} \otimes \left( {{\mathbf{t}}_{n + 1} - {\mathbf{t}}_{n} } \right){\varvec{\Upsilon}}_{\beta (n + 1/2)} {\varvec{\Omega}}_{\beta (n + 1/2)} {\varvec{\Phi}}_{n + 1/2} \\ &\quad \left. { + {\hat{\mathbf{r}}}_{n + 1/2} ,_{\beta } {\mathbf{e}}_{j}^{n + 1/2} \otimes {\varvec{\Phi}}_{n + 1/2} {\varvec{\Psi}}_{\beta (n + 1/2)} \left( {{\varvec{\Lambda}}_{n + 1} - {\varvec{\Lambda}}_{n} } \right){\bar{\boldsymbol{\tau }}}_{0} } \right] \\ & \quad + \lambda_{n + 1} \Delta {\hat{\mathbf{r}}}_{n + 1/2} ,_{\beta } {\mathbf{e}}_{j}^{n + 1/2} \otimes {\mathbf{e}}_{j}^{n + 1} /\left( {{\mathbf{e}}_{j}^{n + 1} \cdot {\mathbf{r}}_{n + 1} ,_{\beta } - {\mathbf{e}}_{j}^{n} \cdot {\mathbf{r}}_{n} ,_{\beta } } \right)^{2} \\ \end{aligned} $$
$$ \begin{aligned} {\mathbf{H}}_{3\alpha }^{a} & = \frac{{\lambda_{n + 1} }}{{2\left( {{\mathbf{e}}_{j}^{n + 1} \cdot {\mathbf{r}}_{n + 1} ,_{\beta } - {\mathbf{e}}_{j}^{n} \cdot {\mathbf{r}}_{n} ,_{\beta } } \right)}} \\ &\quad \left[ {\hat{\mathbf{r}}}_{n + 1/2} ,_{\beta } {\varvec{\Lambda}}_{n + 1/2} {\mathbf{e}}_{j} \otimes \left( {{\varvec{\Phi}}_{n + 1/2} {\varvec{\Psi}}_{\alpha (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} - {\varvec{\Phi}}_{n + 1} {\varvec{\Psi}}_{\alpha (n + 1)} {\varvec{\Lambda}}_{n + 1} } \right){\bar{\boldsymbol{\tau }}}_{0} \right. \\ & \quad + {\hat{\mathbf{r}}}_{n + 1/2} ,_{\beta } {\mathbf{e}}_{j}^{n + 1/2} \otimes {\varvec{\Phi}}_{n + 1/2} {\varvec{\Omega}}_{\alpha (n + 1/2)} {\varvec{\Phi}}_{n + 1/2} \left( {{\mathbf{r}}_{n + 1} ,_{\alpha } - {\mathbf{r}}_{n} ,_{\alpha } } \right) \\ &\quad - {\mathbf{t}}_{n + 1/2}^{T} {\varvec{\Psi}}_{\alpha (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} {\hat{\mathbf{r}}}_{n + 1/2} ,_{\beta } {\mathbf{e}}_{j}^{n + 1/2} \otimes \left( {{\mathbf{t}}_{n + 1} - {\mathbf{t}}_{n} } \right) \\ & \quad - {\bar{\boldsymbol{\tau }}}_{0}^{T} {\varvec{\Lambda}}_{n + 1/2}^{T} {\varvec{\Psi}}_{\alpha (n + 1/2)} \left( {{\mathbf{t}}_{n + 1} - {\mathbf{t}}_{n} } \right){\hat{\mathbf{r}}}_{n + 1/2} ,_{\beta } {\mathbf{e}}_{j}^{n + 1/2} \otimes {\mathbf{t}}_{n + 1/2} \\ &\quad - {\hat{\mathbf{r}}}_{n + 1/2} ,_{\beta } {\mathbf{e}}_{j}^{n + 1/2} \otimes \left( {{\mathbf{t}}_{n + 1} - {\mathbf{t}}_{n} } \right){\varvec{\Upsilon}}_{\alpha (n + 1/2)} {\varvec{\Omega}}_{\alpha (n + 1/2)} {\varvec{\Phi}}_{n + 1/2} \\ & \quad \left. {{\mathbf{ + \hat{r}}}_{n + 1/2} ,_{\beta } {\mathbf{e}}_{j}^{n + 1/2} \otimes {\varvec{\Phi}}_{n + 1/2} {\varvec{\Psi}}_{\alpha (n + 1/2)} \left( {{\varvec{\Lambda}}_{n + 1} - {\varvec{\Lambda}}_{n} } \right){\bar{\boldsymbol{\tau }}}_{0} } \right] \\ \end{aligned} $$
$$ \begin{aligned} {\mathbf{H}}_{33}^{a} & = \frac{{\lambda_{n + 1} }}{{2\left( {{\mathbf{e}}_{j}^{n + 1} \cdot {\mathbf{r}}_{n + 1} ,_{\beta } - {\mathbf{e}}_{j}^{n} \cdot {\mathbf{r}}_{n} ,_{\beta } } \right)}} \\ &\quad \left\{ {\Delta {\hat{\mathbf{r}}}_{n + 1/2} ,_{\beta } {\varvec{\Lambda}}_{n + 1} {\hat{\mathbf{e}}}_{j} {\varvec{\Lambda}}_{n}^{T} + {\hat{\mathbf{r}}}_{n + 1/2} ,_{\beta } {\mathbf{e}}_{j}^{n + 1/2} } \right. \\ &\quad \left. {\otimes \left[ {{\hat{\mathbf{t}}}_{n + 1} \left( {{\varvec{\Upsilon}}_{\alpha (n + 1)} {\varvec{\Psi}}_{\alpha (n + 1)} {\mathbf{ + \varUpsilon }}_{\beta (n + 1)} {\varvec{\Upsilon}}_{\beta (n + 1)} } \right) - {\boldsymbol{\hat{\bar{\tau }}}}_{n + 1} } \right]{\varvec{\Lambda}}_{n + 1} {\bar{\boldsymbol{\tau }}}_{0} } \right. \\ & \quad + {\hat{\mathbf{r}}}_{n + 1/2} ,_{\beta } {\mathbf{e}}_{j}^{n + 1/2} \otimes \left( {{\mathbf{r}}_{n + 1} ,_{\beta } - {\mathbf{r}}_{n} ,_{\beta } } \right) \\ &\quad \left( {{\mathbf{t}}_{n + 1/2}^{T} {\varvec{\Psi}}_{\beta (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} {\mathbf{I}}_{3 \times 3} + {\mathbf{t}}_{n + 1/2} \otimes {\varvec{\Psi}}_{\beta (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} } \right){\hat{\mathbf{t}}}_{n + 1} \\ & \quad + {\hat{\mathbf{r}}}_{n + 1/2} ,_{\beta } {\mathbf{e}}_{j}^{n + 1/2} \otimes \left( {{\mathbf{r}}_{n + 1} ,_{\beta } - {\mathbf{r}}_{n} ,_{\beta } } \right){\varvec{\Phi}}_{n + 1/2} \\ &\quad \left( {{\varvec{\Psi}}_{\beta (n + 1/2)} {\varvec{\Lambda}}_{n + 1} {\boldsymbol{\hat{\bar{\tau }}}}_{0} {\varvec{\Lambda}}_{n + 1}^{T} {\mathbf{ - \varOmega }}_{\beta (n + 1/2)} {\varvec{\Upsilon}}_{\beta (n + 1/2)}^{T} {\hat{\mathbf{t}}}_{n + 1} } \right) \\ & \quad + {\hat{\mathbf{r}}}_{n + 1/2} ,_{\beta } {\mathbf{e}}_{j}^{n + 1/2} \otimes \left( {{\mathbf{r}}_{n + 1} ,_{\alpha } - {\mathbf{r}}_{n} ,_{\alpha } } \right) \\ &\quad \left( {{\mathbf{t}}_{n + 1/2}^{T} {\varvec{\Psi}}_{\alpha (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} {\mathbf{I}}_{3 \times 3} + {\mathbf{t}}_{n + 1/2} \otimes {\varvec{\Psi}}_{\alpha (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} } \right){\hat{\mathbf{t}}}_{n + 1} \\ & \quad + {\hat{\mathbf{r}}}_{n + 1/2} ,_{\beta } {\mathbf{e}}_{j}^{n + 1/2} \otimes \left( {{\mathbf{r}}_{(n + 1)} ,_{\alpha } - {\mathbf{r}}_{n} ,_{\alpha } } \right){\varvec{\Phi}}_{n + 1/2} \\ &\quad \left( {{\varvec{\Psi}}_{\alpha (n + 1/2)} {\varvec{\Lambda}}_{n + 1} {\boldsymbol{\hat{\bar{\tau }}}}_{0} {\varvec{\Lambda}}_{n + 1}^{T} {\mathbf{ - \varOmega }}_{\alpha (n + 1/2)} {\varvec{\Upsilon}}_{\alpha (n + 1/2)}^{T} {\hat{\mathbf{t}}}_{n + 1} } \right) \\ & \quad + {\hat{\mathbf{r}}}_{n + 1/2} ,_{\beta } {\mathbf{e}}_{j}^{n + 1/2} \otimes \left( {{\mathbf{t}}_{n + 1} - {\mathbf{t}}_{n} } \right) \\ &\quad \left( {\mathbf{r}}_{n + 1/2} ,_{\alpha } \otimes {\varvec{\Psi}}_{\alpha (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} + {\varvec{\Psi}}_{\alpha (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} \otimes {\mathbf{r}}_{n + 1/2} ,_{\alpha } \right. \\ &\quad \left. - {\varvec{\Upsilon}}_{\alpha (n + 1/2)} {\varvec{\Omega}}_{\alpha (n + 1/2)} {\varvec{\Upsilon}}_{\alpha (n + 1/2)}^{T} \right){\hat{\mathbf{t}}}_{n + 1} \\ & \quad + {\hat{\mathbf{r}}}_{n + 1/2} ,_{\beta } {\mathbf{e}}_{j}^{n + 1/2} \otimes \left( {{\mathbf{t}}_{n + 1} - {\mathbf{t}}_{n} } \right) \\ &\quad \left( {\mathbf{r}}_{n + 1/2} ,_{\beta } \otimes {\varvec{\Psi}}_{\beta (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} + {\varvec{\Psi}}_{\beta (n + 1/2)} {\varvec{\Lambda}}_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} \otimes {\mathbf{r}}_{n + 1/2} ,_{\beta } \right. \\ &\quad \left. - {\varvec{\Upsilon}}_{\beta (n + 1/2)} {\varvec{\Omega}}_{\beta (n + 1/2)} {\varvec{\Upsilon}}_{\beta (n + 1/2)}^{T} \right){\hat{\mathbf{t}}}_{n + 1} \\ & \quad + {\hat{\mathbf{r}}}_{n + 1/2} ,_{\beta } {\mathbf{e}}_{j}^{n + 1/2} \otimes \left( {{\mathbf{t}}_{n + 1} - {\mathbf{t}}_{n} } \right) \\ &\quad \left( {{\varvec{\Upsilon}}_{\alpha (n + 1/2)} {\varvec{\Psi}}_{\alpha (n + 1/2)} + {\varvec{\Upsilon}}_{\beta (n + 1/2)} {\varvec{\Psi}}_{\beta (n + 1/2)} } \right){\varvec{\Lambda}}_{n + 1} {\boldsymbol{\hat{\bar{\tau }}}}_{0} {\varvec{\Lambda}}_{n + 1}^{T} \\ & \quad - {\hat{\mathbf{r}}}_{n + 1/2} ,_{\beta } {\mathbf{e}}_{j}^{n + 1/2} \otimes \left( {{\varvec{\Lambda}}_{n + 1} - {\varvec{\Lambda}}_{n} } \right){\bar{\boldsymbol{\tau }}}_{0} \\ &\quad \left( {{\varvec{\Psi}}_{\beta (n + 1/2)} {\varvec{\Upsilon}}_{\beta (n + 1/2)}^{T} + {\varvec{\Psi}}_{\alpha (n + 1/2)} {\varvec{\Upsilon}}_{\alpha (n + 1/2)}^{T} } \right){\hat{\mathbf{t}}}_{n + 1} \\ & \quad - 2{\hat{\mathbf{r}}}_{n + 1/2} ,_{\beta } {\mathbf{e}}_{j}^{n + 1/2} \otimes {\varvec{\Lambda}}_{n + 1} {\hat{\mathbf{t}}}_{0} {\varvec{\Lambda}}_{n + 1}^{T} \\ &\quad \left( {{\varvec{\Upsilon}}_{\alpha (n + 1/2)} {\varvec{\Psi}}_{\alpha (n + 1/2)} + {\varvec{\Upsilon}}_{\beta (n + 1/2)} {\varvec{\Psi}}_{\beta (n + 1/2)} } \right)\varLambda_{n + 1/2} {\bar{\boldsymbol{\tau }}}_{0} \\ & \quad \left. { + 2{\hat{\mathbf{r}}}_{n + 1/2} ,_{\beta } {\mathbf{e}}_{j}^{n + 1/2} \otimes {\varvec{\Lambda}}_{n + 1} {\boldsymbol{\hat{\bar{\tau }}}}_{0} {\varvec{\Lambda}}_{n + 1}^{T} {\bar{\boldsymbol{\tau }}}_{n + 1/2} } \right\} \\ &\quad + \lambda_{n + 1} \Delta {\hat{\mathbf{r}}}_{n + 1/2} ,_{\beta } {\mathbf{e}}_{j}^{n + 1/2} \otimes {\hat{\mathbf{e}}}_{j}^{n + 1} {\mathbf{r}}_{n + 1} ,_{\beta } / \\ &\quad \left( {{\mathbf{e}}_{j}^{n + 1} \cdot {\mathbf{r}}_{n + 1} ,_{\beta } - {\mathbf{e}}_{j}^{n} \cdot {\mathbf{r}}_{n} ,_{\beta } } \right)^{2} \\ \end{aligned} $$
$$ {\mathbf{H}}_{\beta 4}^{a} = \frac{{\Delta {\mathbf{e}}_{j}^{n + 1/2} }}{{\left( {{\mathbf{e}}_{j}^{n + 1} \cdot {\mathbf{r}}_{n + 1} ,_{\beta } - {\mathbf{e}}_{j}^{n} \cdot {\mathbf{r}}_{n} ,_{\beta } } \right)}} $$
$$ {\mathbf{H}}_{34}^{a} = - \frac{{\Delta {\hat{\mathbf{r}}}_{n + 1/2} ,_{\beta } {\mathbf{e}}_{j}^{n + 1/2} }}{{\left( {{\mathbf{e}}_{j}^{n + 1} \cdot {\mathbf{r}}_{n + 1} ,_{\beta } - {\mathbf{e}}_{j}^{n} \cdot {\mathbf{r}}_{n} ,_{\beta } } \right)}} $$
$$ {\mathbf{H}}_{21}^{a} = {\mathbf{H}}_{22}^{a} = {\mathbf{H}}_{23}^{a} = {\mathbf{0}}_{3 \times 3} ;\quad {\mathbf{H}}_{24}^{a} = {\mathbf{0}}_{3 \times 1} $$
$$ {\mathbf{H}}_{41}^{a} = {\mathbf{H}}_{42}^{a} = {\mathbf{H}}_{43}^{a} = {\mathbf{0}}_{1 \times 3} ;\quad {\mathbf{H}}_{44}^{a} = 0 $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Stanciulescu, I., Yao, X. et al. An energy–momentum conserving scheme for geometrically exact shells with drilling DOFs. Comput Mech 67, 341–364 (2021). https://doi.org/10.1007/s00466-020-01936-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-020-01936-9

Keywords

Navigation