Skip to main content
Log in

Non-linear and hysteretical finite element formulation applied to magnetostrictive materials

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Giant magnetostrictive actuators are suitable for applications requiring large mechanical displacements under low magnetic fields; for instance Terfenol-D made out of rare earth-iron materials can produce important strains. But these actuators exhibit hysteretic non-linear behavior, making it very difficult to experimentally characterize them. Therefore, sophisticated numerical algorithms to develop computational tools are necessary. In this work, theoretical and numerical formulations within the finite element method are developed to simulate magnetostriction. Theoretically, within the framework of non-equilibrium thermodynamics, the hysteresis is introduced by the Debye-memory relaxation. Numerically, the main novelty is the time integration, coupled Newmark-\(\beta \) (for mechanical) and convolution integrals (for magnetic constitutive equations); the non-linearity is solved with the standard Newton–Raphson algorithm. Constitutive non-linearities are incorporated with the Maxwell stress tensor, quadratically dependent on the magnetic field. The numerical code is validated using analytical and experimental solutions; several examples are presented to demonstrate the capabilities of the present formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Orszulik RR, Gabbert U (2015) An interface between Abaqus and Simulink for high-fidelity simulations of smart structures. IEEE/ASME Trans Mechatron 21(2):879–887

    Article  Google Scholar 

  2. Melchor J, Rus G (2014) Torsional ultrasonic transducer computational design optimization. Ultrasonics 54(7):1950–1962

    Article  Google Scholar 

  3. Khan FU, Ahmad I (2016) Review of energy harvesters utilizing bridge vibrations. Shock Vib 2016:1–21

    Google Scholar 

  4. Melingui A, Lakhal O, Daachi B, Bosco J, Merzouki R (2015) Adaptive neural network control of a compact bionic handling arm. IEEE/ASME Trans Mechatron 20(6):2862–2875

    Article  Google Scholar 

  5. Anjanappa M, Bi J (1994) A theoretical and experimental study of magnetostrictive mini-actuators. Smart Mater Struct 3:83–91

    Article  Google Scholar 

  6. Anjanappa M, Bi J (1994) Magnetostrictive mini actuators for smart structure applications. Smart Mater Struct 3:383–390

    Article  Google Scholar 

  7. Venkataraman R, Rameau J, Krishnaprasad PS. Characterization of an ETREMA MP 50/6 magnetostrictive actuator, TR 98-1. Technical report of the Institute for System Research, University of Maryland at College Park

  8. Li Z, Zhang X, Gu GY, Chen X, Su CY (2016) A comprehensive dynamic model for magnetostrictive actuators considering different input frequencies with mechanical loads. IEEE Trans Ind Inform 12(3):980–990

    Article  Google Scholar 

  9. Pérez-Aparicio JL, Sosa H (2004) A continuum three-dimensional, fully coupled, dynamic, non-linear finite element formulation for magnetostrictive materials. Smart Mater Struct 13:493–502

    Article  Google Scholar 

  10. Perez-Aparicio JL, Palma R, Taylor RL (2016) Multiphysics and thermodynamic formulations for equilibrium and non-equilibrium interactions: non-linear finite elements applied to multi-coupled active materials. Arch Comput Methods Engieering 23(3):535–583

    Article  MathSciNet  Google Scholar 

  11. Kannan KS, Dasgupta A (1997) A non-linear Galerkin finite-element theory for modeling magnetostrictive smart structures. Smart Mater Struct 6:341–350

    Article  Google Scholar 

  12. Kiang J, Tong L (2010) Nonlinear magneto-mechanical finite element analysis of Ni–Mn–Ga single crystals. Smart Mater Struct 19:1–17

    Article  Google Scholar 

  13. Zhou P (2015) On the coupling effects between elastic and electromagnetic fields from the perspective of conservation of energy. arXiv:1512.04487

  14. Natale C, Velardi F, Visone C (2001) Identification and compensation of Preisach hysteresis models for magnetostrictive actuators. Phys B Condens Matter 306(1):161–165

    Article  Google Scholar 

  15. Kaltenbacher M, Meiler M, Ertl M (2009) Physical modeling and numerical computation of magnetostriction. Int J Comput Math Electr Electron Eng 28(4):819–832

    Article  MathSciNet  Google Scholar 

  16. Linnemann K, Klinkel S, Wagner W (2009) A constitutive model for magnetostrictive and piezoelectric materials. Int J Solids Struct 46:1149–1166

    Article  Google Scholar 

  17. de Groot SR, Mazur P (1984) Non-equilibrium thermodynamics. Dover, Mineola

    MATH  Google Scholar 

  18. Pérez-Aparicio JL, Palma R, Moreno-Navarro P (2016) Elasto-thermoelectric non-linear, fully coupled, and dynamic finite element analysis of pulsed thermoelectrics. Appl Therm Eng 107:398–409

    Article  Google Scholar 

  19. Taylor RL (2010) FEAP a finite element analysis program: user manual. University of California, Berkeley

    Google Scholar 

  20. Jiménez JL, Campos I, López-Mariño MA (2013) Maxwell’s equations in material media, momentum balance equations and force densities associated with them. Eur Phys J Plus 128(46):1–6

    Google Scholar 

  21. Sardanashvily G (2016) Noether’s theorems. Applications in mechanics and field theory. Springer, Berlin

    MATH  Google Scholar 

  22. Landau LD, Lifshitz EM (1984) Electrodynamics of continuous media. Pergamon Press Ltd, Oxford

    Google Scholar 

  23. Juretschke HJ (1977) Simple derivation of the Maxwell stress tensor and electrostictive effects in crystals. Am J Phys 45(3):277–280

    Article  Google Scholar 

  24. Palma R, Pérez-Aparicio JL, Taylor RL (2019) On the non-symmetry of the Maxwell stress tensor: a generalized continuum mechanics approach. Int J Eng Sci (submitted)

  25. McMeeking RM, Landis CM (2005) Electrostatic forces and stored energy for deformable dielectric materials. J Appl Mech 72:581–590

    Article  Google Scholar 

  26. Reitz JR, Milford FJ, Christy RW (1960) Foundations of electromagnetic theory. Addison-Wesley Publishing Company, Inc, Boston

    Google Scholar 

  27. Palma R, Pérez-Aparicio JL, Taylor RL (2017) Dissipative finite element formulation applied to piezoelectric materials with Debye memory. IEEE/ASME Trans Mechatron 23(2):856–863

    Article  Google Scholar 

  28. Zienkiewicz OC, Taylor RL, Zhu JZ (2013) The finite element method: its basis and fundamentals, 7th edn. Elsevier, Oxford

    MATH  Google Scholar 

  29. Moffett MB, Clark AE, Wun-Fogle M, Linberg J, Teter JP, McLaughlin EA (1991) Characterization of Terfenol-D for magnetostrictive transducers. J Acoust Soc Am 89(3):1448–1455

    Article  Google Scholar 

  30. Telesnin RV, Shishkov AG (1958) Effect of magnetic viscosity on the frequency properties of ferrites. Sov Phys JETP 6(33):649–652

    Google Scholar 

  31. Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics—I alternating current characteristics. J Chem Phys 9(4):341–352

    Article  Google Scholar 

  32. Gualdi AJ, Zabotto ML, Garcia D, Bhalla A, Gu R, de Camargo PC, de Oliveira AJ (2016) Understanding the dynamic magnetization process for the magnetoelectric effect in multiferroic composites. J Appl Phys 119(12):4110

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Palma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

For the FE implementation, the tangent stiffness \(\varvec{\mathcal {K}}\) and mass \(\varvec{\mathcal {M}}\) matrices may be explicitly expressed as:

$$\begin{aligned} \varvec{\mathcal {K}}^{uu}_{ab}&= \displaystyle \int _{\varOmega _e} {\varvec{\mathcal {B}}}^{sy \top }_{a}~\displaystyle \frac{\partial \varvec{\sigma }_{_{\!T}} ^{n + 1}}{\partial \tilde{\varvec{u}}_b^{n + 1}} \ \text{ d }\varOmega _e,\nonumber \\ \varvec{\mathcal {K}}^{u\varphi }_{ab}&=\displaystyle \int _{\varOmega _e} {\varvec{\mathcal {B}}}^{sy \top }_{a}~\displaystyle \frac{\partial \varvec{\sigma }_{_{\!T}} ^{n + 1}}{\partial \tilde{\varphi }_b^{n + 1} } \ \text{ d }\varOmega _e,\nonumber \\ \varvec{\mathcal {K}}^{\varphi u}_{ab}&= -\displaystyle \int _{\varOmega _e} {\varvec{\mathcal {B}}}^{\top }_{a}~\displaystyle \frac{\partial \varvec{B}^{n + 1}}{\partial \tilde{\varvec{u}}_b^{n + 1}} \ \text{ d }\varOmega _e,\nonumber \\ {\mathcal {K}}^{\varphi \varphi }_{ab}&= -\displaystyle \int _{\varOmega _e} {\varvec{\mathcal {B}}}^{\top }_{a}~\displaystyle \frac{\partial \varvec{B}^{n + 1}}{\partial \tilde{\varphi }_b^{n + 1} } \ \text{ d }\varOmega _e,\nonumber \\ \varvec{\mathcal {M}}^{uu}_{ab}&=\displaystyle \int _{\varOmega _e} \mathcal {N}_a~\rho _m~\varvec{I}~\mathcal {N}_b \ \text{ d }\varOmega _e. \end{aligned}$$
(46)

First, the mechanic and magnetic derivatives are calculated using (32) and (5) along with (10):

$$\begin{aligned} \displaystyle \frac{\partial \varvec{\sigma }_{_{\!T}} ^{n + 1}}{\partial \tilde{\varvec{u}}_b^{n + 1} }= & {} \mathbf {C}~{\varvec{\mathcal {B}}}^{sy}_{b} + \displaystyle \frac{\partial \varvec{\sigma }_{_{\!Mx}} ^{sy} \vert ^{n + 1}}{\partial \tilde{\varvec{u}}_b^{n + 1} },\nonumber \\ \displaystyle \frac{\partial \varvec{\sigma }_{_{\!T}} ^{n + 1}}{\partial \tilde{\varphi }_b^{n + 1}}= & {} (\varvec{e}^\varphi )^\top ~{\varvec{\mathcal {B}}}^{}_{b} + \displaystyle \frac{\partial \varvec{\sigma }_{_{\!Mx}} ^{sy} \vert ^{n + 1}}{\partial \tilde{\varphi }_b^{n + 1}} ,\nonumber \\ \displaystyle \frac{\partial \varvec{\sigma }_{_{\!Mx}} ^{sy} \vert ^{n + 1}}{\partial \tilde{\varvec{u}}_b^{n + 1}}= & {} \displaystyle \frac{1}{2}~ \bigg [ \displaystyle \frac{\partial \varvec{B}_{n + 1}}{\partial \tilde{\varvec{u}}_b^{n + 1}}\varvec{H}_{n + 1}^\top + \varvec{H}_{n + 1}\left( \displaystyle \frac{\partial \varvec{B}_{n + 1}}{\partial \tilde{\varvec{u}}_b^{n + 1}}\right) ^\top \nonumber \\&-\displaystyle \frac{2}{\mu _0}\displaystyle \frac{\partial \varvec{B}_{n + 1}}{\partial \tilde{\varvec{u}}_b^{n + 1}}\varvec{B}_{n + 1}^\top \varvec{I}\bigg ],\nonumber \\ \displaystyle \frac{\partial \varvec{\sigma }_{_{\!Mx}} ^{sy} \vert ^{n + 1}}{\partial \tilde{\varphi }_b^{n + 1}}= & {} \displaystyle \frac{1}{2}~ \bigg [\displaystyle \frac{\partial \varvec{B}^{n + 1}}{\partial \tilde{\varphi }_b^{n + 1}}(\varvec{H}^{n + 1})^\top + \varvec{H}^{n + 1}\left( \displaystyle \frac{\partial \varvec{B}^{n + 1}}{\partial \tilde{\varphi }_b^{n + 1}} \right) ^\top \nonumber \\&-\varvec{B}^{n + 1}~{\varvec{\mathcal {B}}}^{\top }_{b} -{\varvec{\mathcal {B}}}^{}_{b}~(\varvec{B}^{n + 1})^\top \nonumber \\&-\displaystyle \frac{2}{\mu _0}\displaystyle \frac{\partial \varvec{B}_{n + 1}}{\partial \tilde{\varphi }_b^{n + 1}}\varvec{B}_{n + 1}^\top \varvec{I}\bigg ]. \end{aligned}$$
(47)

Second, the time-dependent derivatives for the magnetic induction are obtained from (39) to give:

$$\begin{aligned} \begin{array}{lllllllr} \displaystyle \frac{\partial \varvec{B}^{n + 1}}{\partial \tilde{\varvec{u}}_b^{n + 1} } = \displaystyle \Big [1 - \phi (\varDelta \tau )\Big ]~\varvec{e}^\varphi ~{\varvec{\mathcal {B}}}^{sy}_{b},\\ \displaystyle \frac{\partial \varvec{B}^{n + 1}}{\partial \tilde{\varphi }_b^{n + 1}} = -\displaystyle \Big [1 - \phi (\varDelta \tau )\Big ]~\varvec{\mu }~{\varvec{\mathcal {B}}}^{}_{b} . \end{array} \end{aligned}$$
(48)

Finally, this numerical formulation is implemented in the FE research software FEAP [19].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palma, R., Pérez-Aparicio, J.L. & Taylor, R.L. Non-linear and hysteretical finite element formulation applied to magnetostrictive materials. Comput Mech 65, 1433–1445 (2020). https://doi.org/10.1007/s00466-020-01828-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-020-01828-y

Keywords

Navigation