Skip to main content
Log in

Clustering discretization methods for generation of material performance databases in machine learning and design optimization

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Mechanical science and engineering can use machine learning. However, data sets have remained relatively scarce; fortunately, known governing equations can supplement these data. This paper summarizes and generalizes three reduced order methods: self-consistent clustering analysis, virtual clustering analysis, and FEM-clustering analysis. These approaches have two-stage structures: unsupervised learning facilitates model complexity reduction and mechanistic equations provide predictions. These predictions define databases appropriate for training neural networks. The feed forward neural network solves forward problems, e.g., replacing constitutive laws or homogenization routines. The convolutional neural network solves inverse problems or is a classifier, e.g., extracting boundary conditions or determining if damage occurs. We will explain how these networks are applied, then provide a practical exercise: topology optimization of a structure (a) with non-linear elastic material behavior and (b) under a microstructural damage constraint. This results in microstructure-sensitive designs with computational effort only slightly more than for a conventional linear elastic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. A 5% deviation from the reference solution (DNS) is indicated by the blue shaded region in Figs. 6 and 7.

References

  1. Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids 11(2):127

    Article  MathSciNet  MATH  Google Scholar 

  2. Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 13(4):213

    Article  MathSciNet  Google Scholar 

  3. Ghosh S, Lee K, Moorthy S (1996) Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Voronoi cell finite element model. Comput Methods Appl Mech Eng 132(1–2):63

    Article  MATH  Google Scholar 

  4. Paley M, Aboudi J (1992) Micromechanical analysis of composites by the generalized cells model. Mech Mater 14(2):127

    Article  Google Scholar 

  5. Dvorak GJ (1992) Transformation field analysis of inelastic composite materials. Proc R Soci London Series A Math Phys Sci 437(1900):311–327

    Article  MathSciNet  MATH  Google Scholar 

  6. Michel JC, Suquet P (2003) Nonuniform transformation field analysis. Int J Solids Struct 40(25):6937

    Article  MathSciNet  MATH  Google Scholar 

  7. Yvonnet J, He QC (2007) The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains. J Comput Phys 223(1):341

    Article  MathSciNet  MATH  Google Scholar 

  8. Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Annu Rev Fluid Mech 25(1):539

    Article  MathSciNet  Google Scholar 

  9. Liu Z, Bessa M, Liu W (2016) Self-consistent clustering analysis: an efficient multi-scale scheme for inelastic heterogeneous materials. Comput Methods Appl Mech Eng 306:319

    Article  MathSciNet  Google Scholar 

  10. Shakoor M, Kafka OL, Yu C, Liu WK (2018) Data science for finite strain mechanical science of ductile materials. Comput Mech 1–13

  11. Kafka OL, Yu C, Shakoor M, Liu Z, Wagner GJ, Liu WK (2018) Data-driven mechanistic modeling of influence of microstructure on high-cycle fatigue life of nickel titanium. JOM 70(7):1154

    Article  Google Scholar 

  12. Yu C, Kafka OL, Liu WK (2019) Self-consistent clustering analysis for multiscale modeling at finite strains. Comput Methods Appl Mech Eng 349:339

    Article  MathSciNet  Google Scholar 

  13. Oishi A, Yagawa G (2017) Computational mechanics enhanced by deep learning. Comput Methods Appl Mech Eng 327:327

    Article  MathSciNet  Google Scholar 

  14. Kirchdoerfer T, Ortiz M (2016) Data-driven computational mechanics. Comput Methods Appl Mech Eng 304:81

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu Z, Wu C, Koishi M (2018) A deep material network for multiscale topology learning and accelerated nonlinear modeling of heterogeneous materials. Comput Methods Appl Mech Eng 345:1138–1168

    Article  MathSciNet  Google Scholar 

  16. Tang S, Zhang L, Liu WK (2018) From virtual clustering analysis to self-consistent clustering analysis: a mathematical study. Comput Mech 1–18

  17. Cheng G, Li X, Nie Y, Li H (2019) FEM-Cluster based reduction method for efficient numerical prediction of effective properties of heterogeneous material in nonlinear range. Comput Methods Appl Mech Eng 348:157–184

    Article  MathSciNet  Google Scholar 

  18. Kröner E (1972) Statistical continuum mechanics, vol 92. Springer, Berlin

    MATH  Google Scholar 

  19. Gan Z, Li H, Wolff SJ, Bennett JL, Hyatt G, Wagner GJ, Cao J, Liu WK (2019) Data-driven microstructure and microhardness design in additive manufacturing using self-organizing map. Engineering (in press)

  20. Zhang L, Tang S, Yu C, Zhu X, Liu W K (2019) Fast calculation of interaction tensors in clustering-based homogenization. Comput Mech (in press)

  21. Nie Y, Cheng G, Li X, Xu L, Li K (2019) Principle of cluster minimum complementary energy of FEM-cluster-based reduced order method: fast updating the interaction matrix and predicting effective nonlinear properties of heterogeneous material. Comput Mech. https://doi.org/10.1007/s00466-019-01710-6

  22. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press. http://www.deeplearningbook.org. Accessed 28 Apr 2019

  23. Haykin S (1994) Neural networks: a comprehensive foundation. Prentice Hall PTR, Upper Saddle River

    MATH  Google Scholar 

  24. Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85

    Article  Google Scholar 

  25. Funahashi KI (1989) On the approximate realization of continuous mappings by neural networks. Neural Netw 2(3):183

    Article  Google Scholar 

  26. Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359

    Article  MATH  Google Scholar 

  27. Ghaboussi J, Garrett J Jr, Wu X (1991) Knowledge-based modeling of material behavior with neural networks. J Eng Mech 117(1):132

    Article  Google Scholar 

  28. Furukawa T, Yagawa G (1998) Implicit constitutive modelling for viscoplasticity using neural networks. Int J Numer Methods Eng 43(2):195

    Article  MATH  Google Scholar 

  29. Qingbin L, Zhong J, Mabao L, Shichun W (1996) Acquiring the constitutive relationship for a thermal viscoplastic material using an artificial neural network. J Mater Process Technol 62(1–3):206

    Article  Google Scholar 

  30. Yeh IC (1998) Modeling of strength of high-performance concrete using artificial neural networks. Cement Concrete Res 28(12):1797

    Article  Google Scholar 

  31. Huber N, Tsakmakis C (2001) A neural network tool for identifying the material parameters of a finite deformation viscoplasticity model with static recovery. Comput Methods Appl Mech Eng 191(3–5):353

    Article  MATH  Google Scholar 

  32. Pichler B, Lackner R, Mang HA (2003) Back analysis of model parameters in geotechnical engineering by means of soft computing. Int J Numer Methods Eng 57(14):1943

    Article  MATH  Google Scholar 

  33. Kucerová A, Leps M, Zeman J (2009) Back analysis of microplane model parameters using soft computing methods. arXiv preprint arXiv:0902.1690

  34. Feyel F, Chaboche JL (2000) FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Comput Methods Appl Mech Eng 183(3–4):309

    Article  MATH  Google Scholar 

  35. Kouznetsova V, Geers MG, Brekelmans WM (2002) Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int J Numer Methods Eng 54(8):1235

    Article  MATH  Google Scholar 

  36. Feyel F (2003) A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua. Comput Methods Appl Mech Eng 192(28—-30):3233

    Article  MATH  Google Scholar 

  37. Ghaboussi J, Pecknold DA, Zhang M, Haj-Ali RM (1998) Autoprogressive training of neural network constitutive models. Int J Numer Methods Eng 42(1):105

    Article  MATH  Google Scholar 

  38. Shin H, Pande G (2000) On self-learning finite element codes based on monitored response of structures. Comput Geotech 27(3):161

    Article  Google Scholar 

  39. Shin H, Pande G (2003) Identification of elastic constants for orthotropic materials from a structural test. Comput Geotech 30(7):571

    Article  Google Scholar 

  40. Gawin D, Lefik M, Schrefler B (2001) ANN approach to sorption hysteresis within a coupled hygro-thermo-mechanical FE analysis. Int J Numer Methods Eng 50(2):299

    Article  MATH  Google Scholar 

  41. Lefik M, Schrefler B (2002) One-dimensional model of cable-in-conduit superconductors under cyclic loading using artificial neural networks. Fusion Eng Des 60(2):105

    Article  Google Scholar 

  42. Lefik M, Schrefler B (2003) Artificial neural network as an incremental non-linear constitutive model for a finite element code. Comput Methods Appl Mech Eng 192(28–30):3265

    Article  MATH  Google Scholar 

  43. Le B, Yvonnet J, He QC (2015) Computational homogenization of nonlinear elastic materials using neural networks. Int J Numer Methods Eng 104(12):1061

    Article  MathSciNet  MATH  Google Scholar 

  44. Bhattacharjee S, Matouš K (2016) A nonlinear manifold-based reduced order model for multiscale analysis of heterogeneous hyperelastic materials. J Comput Phys 313:635

    Article  MathSciNet  MATH  Google Scholar 

  45. Cecen A, Dai H, Yabansu YC, Kalidindi SR, Song L (2018) Material structure-property linkages using three-dimensional convolutional neural networks. Acta Mater 146:76

    Article  Google Scholar 

  46. Wang K, Sun W (2019) Meta-modeling game for deriving theory-consistent, microstructure-based traction-separation laws via deep reinforcement learning. Comput Methods Appl Mech Eng 346:216

    Article  MathSciNet  Google Scholar 

  47. Han J, Moraga C (1995) The influence of the sigmoid function parameters on the speed of backpropagation learning. In: International workshop on artificial neural networks. Springer, Berlin, pp 195–201

  48. Matlab deep learning toolbox (2018b) MATLAB deep learning toolbox. The MathWorks, Natick

    Google Scholar 

  49. Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Q Appl Math 2(2):164

    Article  MathSciNet  MATH  Google Scholar 

  50. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11(2):431

    Article  MathSciNet  MATH  Google Scholar 

  51. Goodfellow I, Bengio Y, Courville A (2017) Deep learning. MIT Press, Cambridge

    MATH  Google Scholar 

  52. Matsugu M, Mori K, Mitari Y, Kaneda Y (2003) Subject independent facial expression recognition with robust face detection using a convolutional neural network. Neural Netw 16(5–6):555

    Article  Google Scholar 

  53. Lubbers N, Lookman T, Barros K (2017) Inferring low-dimensional microstructure representations using convolutional neural networks. Phys Rev E 96(5):052111

    Article  Google Scholar 

  54. Kondo R, Yamakawa S, Masuoka Y, Tajima S, Asahi R (2017) Microstructure recognition using convolutional neural networks for prediction of ionic conductivity in ceramics. Acta Mater 141:29

    Article  Google Scholar 

  55. DeCost BL, Francis T, Holm EA (2017) Exploring the microstructure manifold: image texture representations applied to ultrahigh carbon steel microstructures. Acta Mater 133:30

    Article  Google Scholar 

  56. Ling J, Hutchinson M, Antono E, DeCost B, Holm EA, Meredig B (2017) Building data-driven models with microstructural images: generalization and interpretability. Mater Discov 10:19

    Article  Google Scholar 

  57. Cang R, Li H, Yao H, Jiao Y, Ren Y (2018) Improving direct physical properties prediction of heterogeneous materials from imaging data via convolutional neural network and a morphology-aware generative model. Comput Mater Sci 150:212

    Article  Google Scholar 

  58. Yang Z, Yabansu YC, Al-Bahrani R, Wk Liao, Choudhary AN, Kalidindi SR, Agrawal A (2018) Deep learning approaches for mining structure-property linkages in high contrast composites from simulation datasets. Comput Mater Sci 151:278

    Article  Google Scholar 

  59. Yang Z, Yabansu YC, Jha D, Wk Liao, Choudhary AN, Kalidindi SR, Agrawal A (2019) Establishing structure-property localization linkages for elastic deformation of three-dimensional high contrast composites using deep learning approaches. Acta Mater 166:335

    Article  Google Scholar 

  60. Abaqus V (2014) 6.14 Documentation. Dassault Systemes Simulia Corporation 651

  61. Cheng G, Guo X (1997) \(\varepsilon \)-relaxed approach in structural topology optimization. Struct Optim 13(4):258

    Article  Google Scholar 

  62. Duysinx P, Bendsøe MP (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43(8):1453

    Article  MathSciNet  MATH  Google Scholar 

  63. Guo X, Cheng G, Yamazaki K (2001) A new approach for the solution of singular optima in truss topology optimization with stress and local buckling constraints. Struct Multidiscip Optim 22(5):364

    Article  Google Scholar 

  64. Guo X, Zhang WS, Wang MY, Wei P (2011) Stress-related topology optimization via level set approach. Comput Methods Appl Mech Eng 200(47–48):3439

    Article  MathSciNet  MATH  Google Scholar 

  65. Sigmund O (2001) A 99 line topology optimization code written in MATLAB. Struct Multidiscip Optim 21(2):120

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank Sourav Saha and Satyajit Mojumder for their helpful suggestions during the writing process. W.K.L. acknowledges the support of the National Science Foundation under Grant No. MOMS/CMMI-1762035. O.L.K. thanks the United States National Science Foundation (NSF) for their support through the NSF Graduate Research Fellowship Program under financial award number DGE-1324585. H. L. acknowledges the support by the Northwestern University Data Science Initiative (DSI) under Grant No. 171 4745002 10043324. L.Z. and SQ.T. were supported partially by the National Science Foundation of China under Grant numbers 11832001, 11521202, and 11890681.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wing Kam Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Kafka, O.L., Gao, J. et al. Clustering discretization methods for generation of material performance databases in machine learning and design optimization. Comput Mech 64, 281–305 (2019). https://doi.org/10.1007/s00466-019-01716-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-019-01716-0

Keywords

Navigation