Skip to main content

Advertisement

Log in

A modified dual-level algorithm for large-scale three-dimensional Laplace and Helmholtz equation

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A modified dual-level algorithm is proposed in the article. By the help of the dual level structure, the fully-populated interpolation matrix on the fine level is transformed to a local supported sparse matrix to solve the highly ill-conditioning and excessive storage requirement resulting from fully-populated interpolation matrix. The kernel-independent fast multipole method is adopted to expediting the solving process of the linear equations on the coarse level. Numerical experiments up to 2-million fine-level nodes have successfully been achieved. It is noted that the proposed algorithm merely needs to place 2–3 coarse-level nodes in each wavelength per direction to obtain the reasonable solution, which almost down to the minimum requirement allowed by the Shannon’s sampling theorem. In the real human head model example, it is observed that the proposed algorithm can simulate well computationally very challenging exterior high-frequency harmonic acoustic wave propagation up to 20,000 Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Brebbia CA (1981) Progress in boundary element methods, vol 2. Springer, New York

    Book  MATH  Google Scholar 

  2. Zhang JM, Lin WC, Dong YQ, Ju CM (2017) A double-layer interpolation method for implementation of BEM analysis of problems in potential theory. Appl Math Model 51:250–269. https://doi.org/10.1016/j.apm.2017.06.044

    Article  MathSciNet  Google Scholar 

  3. Shen LM, Liu YJ (2007) An adaptive fast multipole boundary element method for three-dimensional acoustic wave problems based on the Burton–Miller formulation. Comput Mech 40:461–472. https://doi.org/10.1007/s00466-006-0121-2

    Article  MATH  Google Scholar 

  4. Brebbia CA (2017) The birth of the boundary element method from conception to application. Eng Anal Bound Elem 77:iii-x. https://doi.org/10.1016/j.enganabound.2016.12.001

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen W, Li JP, Fu ZJ (2016) Singular boundary method using time-dependent fundamental solution for scalar wave equations. Comput Mech 58:717–730. https://doi.org/10.1007/s00466-016-1313-z

    Article  MathSciNet  MATH  Google Scholar 

  6. Qu WZ, Chen W (2015) Solution of two-dimensional Stokes flow problems using improved singular boundary method. Adv Appl Math Mech 7:13–30. https://doi.org/10.4208/aamm.2013.m359

    Article  MathSciNet  Google Scholar 

  7. Wang FJ, Chen W, Zhang CZ, Lin J (2017) Analytical evaluation of the origin intensity factor of time-dependent diffusion fundamental solution for a matrix-free singular boundary method formulation. Appl Math Model 49:647–662. https://doi.org/10.1016/j.apm.2017.02.044

    Article  MathSciNet  Google Scholar 

  8. Lin J, Chen CS, Wang FJ, Dangal T (2017) Method of particular solutions using polynomial basis functions for the simulation of plate bending vibration problems. Appl Math Model 49:452–469. https://doi.org/10.1016/j.apm.2017.05.012

    Article  MathSciNet  Google Scholar 

  9. Kansa EJ, Holoborodko P (2017) On the ill-conditioned nature of C \(\infty \) RBF strong collocation. Eng Anal Bound Elem 78:26–30. https://doi.org/10.1016/j.enganabound.2017.02.006

    Article  MathSciNet  MATH  Google Scholar 

  10. Liu QG, Šarler B (2017) A non-singular method of fundamental solutions for two-dimensional steady-state isotropic thermoelasticity problems. Eng Anal Bound Elem 75:89–102. https://doi.org/10.1016/j.enganabound.2016.11.010

    Article  MathSciNet  MATH  Google Scholar 

  11. Fairweather G, Karageorghis A (1998) The method of fundamental solutions for elliptic boundary value problems. Adv Comput Math 9:69–95. https://doi.org/10.1023/A:1018981221740

    Article  MathSciNet  MATH  Google Scholar 

  12. Sun Y, He SN (2017) A meshless method based on the method of fundamental solution for three-dimensional inverse heat conduction problems. Int J Heat Mass Transf 108:945–960. https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.079

    Article  Google Scholar 

  13. Li XL, Li SL (2017) Analysis of the complex moving least squares approximation and the associated element-free Galerkin method. Appl Math Model 47:45–62. https://doi.org/10.1016/j.apm.2017.03.019

    Article  MathSciNet  Google Scholar 

  14. Sun HG, Liu XT, Zhang Y, Pang GF, Garrard R (2017) A fast semi-discrete Kansa method to solve the two-dimensional spatiotemporal fractional diffusion. J Comput Phys 345:74–90. https://doi.org/10.1016/j.jcp.2017.05.012

    Article  MathSciNet  MATH  Google Scholar 

  15. Zienkiewicz OC, Taylor RL (1991) The finite element method, 4th edn. McGraw-Hill, New York

    Google Scholar 

  16. Avilez-Valente P, Seabra-Santos FJ (2004) A petrov-galerkin finite element scheme for the regularized long wave equation. Comput Mech 34:256–270. https://doi.org/10.1007/s00466-004-0570-4

    Article  MathSciNet  MATH  Google Scholar 

  17. He ZC, Liu GR, Zhong ZH, Zhang GY, Cheng AG (2010) Dispersion free analysis of acoustic problems using the alpha finite element method. Comput Mech 46:867–881. https://doi.org/10.1007/s00466-010-0516-y

    Article  MATH  Google Scholar 

  18. Chai YB, Gong ZX, Li W, Li TY, Zhang QF (2017) A smoothed finite element method for exterior Helmholtz equation in two dimensions. Eng Anal Bound Elem 84:237–252. https://doi.org/10.1016/j.enganabound.2017.09.006

    Article  MathSciNet  MATH  Google Scholar 

  19. Greengard L, Rokhlin V (1987) A fast algorithm for particle simulations. J Comput Phys 73:325–348. https://doi.org/10.1016/0021-9991(87)90140-9

    Article  MathSciNet  MATH  Google Scholar 

  20. Greengard L (1988) The rapid evaluation of potential fields in particle systems. MIT Press, Cambridge

    MATH  Google Scholar 

  21. Weng CC, Cui TJ, Song JM (2002) A FAFFA–MLFMA algorithm for electromagnetic scattering. IEEE Trans Antennas Propag 50:1641–1649. https://doi.org/10.1109/TAP.2002.802162

    Article  Google Scholar 

  22. Cui TJ, Weng CC, Chen G, Song J (2004) Efficient MLFMA, RPFMA, and FAFFA algorithms for EM scattering by very large structures. IEEE Trans Antennas Propag 52:759–770. https://doi.org/10.1109/TAP.2004.825491

    Article  Google Scholar 

  23. Ying LX, Biros G, Zorin D (2004) A kernel-independent adaptive fast multipole algorithm in two and three dimensions. J Comput Phys 196:591–626. https://doi.org/10.1016/j.jcp.2003.11.021

    Article  MathSciNet  MATH  Google Scholar 

  24. Martinsson PG, Rokhlin V (2007) An accelerated kernel-independent fast multipole method in one dimension. SIAM J Sci Comput 29:1160–1178. https://doi.org/10.1137/060662253

    Article  MathSciNet  MATH  Google Scholar 

  25. Pan XM, Sheng XQ (2013) Hierarchical interpolative decomposition multilevel fast multipole algorithm for dynamic electromagnetic simulations. Prog Electromagn Res 134:79–94. https://doi.org/10.2528/PIER12101001

    Article  Google Scholar 

  26. Saad Y, Schultz MH (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7:856–869. https://doi.org/10.1137/0907058

    Article  MathSciNet  MATH  Google Scholar 

  27. Qu WZ, Chen W, Gu Y (2015) Fast multipole accelerated singular boundary method for the 3D Helmholtz equation in low frequency regime. Comput Math Appl 70:679–690. https://doi.org/10.1016/j.camwa.2015.05.017

    Article  MathSciNet  Google Scholar 

  28. Qu WZ, Chen W, Zheng CJ (2017) Diagonal form fast multipole singular boundary method applied to the solution of high-frequency acoustic radiation and scattering. Int J Numer Methods Eng 111:803–815. https://doi.org/10.1002/nme.5478

    Article  MathSciNet  Google Scholar 

  29. Erlangga YA (2008) Advances in iterative methods and preconditioners for the Helmholtz equation. Arch Comput Methods Eng 15:37–66. https://doi.org/10.1007/s11831-007-9013-7

    Article  MathSciNet  MATH  Google Scholar 

  30. Babuska IM, Sauter SA (2000) Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers? Siam Rev 42:451–484. https://doi.org/10.1137/S0036142994269186

    MathSciNet  MATH  Google Scholar 

  31. Ernst OG, Gander MJ (2012) Why it is difficult to solve Helmholtz problems with classical iterative methods. Lect Notes Comput Sci Eng 83:325–363. https://doi.org/10.1007/978-3-642-22061-6_10

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu L (2017) Single layer regularized meshless method for three dimensional exterior acoustic problem. Eng Anal Bound Elem 77:138–144. https://doi.org/10.1016/j.enganabound.2017.02.001

    Article  MathSciNet  MATH  Google Scholar 

  33. Li JP, Chen W, Fu ZJ, Sun LL (2016) Explicit empirical formula evaluating original intensity factors of singular boundary method for potential and Helmholtz problems. Eng Anal Bound Elem 73:161–169. https://doi.org/10.1016/j.enganabound.2016.10.003

    Article  MathSciNet  MATH  Google Scholar 

  34. Li JP, Chen W (2017) Error bounds of singular boundary method for potential problems. Numer Methods Partial Differ Equ 33:1987–2004. https://doi.org/10.1002/num.22176

    Article  MathSciNet  MATH  Google Scholar 

  35. Fu ZJ, Chen W, Gu Y (2014) Burton–Miller-type singular boundary method for acoustic radiation and scattering. J Sound Vib 333:3776–3793. https://doi.org/10.1016/j.jsv.2014.04.025

    Article  Google Scholar 

  36. Mccowen A (1999) Efficient 3-D moment-method analysis for reflector antennas using a far-field approximation technique. IEE Proc Microw Antennas Propag 146:7–12. https://doi.org/10.1049/ip-map:19990142

    Article  Google Scholar 

  37. Hunt W, Mark WR, Stoll G (2006) Fast kd-tree construction with an adaptive error-bounded heuristic. In: Symposium on interactive ray tracing, Salt Lake City, Utah, pp 81–88

  38. Chen JT, Lee YT, Lin YJ (2010) Analysis of mutiple-shepers radiation and scattering problems by using a null-field integral equation approach. Appl Acoust 71:690–700. https://doi.org/10.1016/j.apacoust.2010.02.004

    Article  Google Scholar 

  39. Schenck HA (1968) Improved integral formulation for acoustic radiation problems. J Acoust Soc Am 44:41–58. https://doi.org/10.1121/1.1911085

    Article  Google Scholar 

  40. Burton AJ, Miller GF (1971) The application of integral equation methods to the numerical solution of some exterior boundary-value problems. Proc R Soc Lond A 323:201–210. https://doi.org/10.1098/rspa.1971.0097

    Article  MathSciNet  MATH  Google Scholar 

  41. Ohayon R, Soize C (2014) Advanced computational vibroacoustics: reduced-order models and uncertainty quantification. Cambridge University Press, New York

    Book  Google Scholar 

  42. Ohayon R, Soize C (2015) Vibration of structures containing compressible liquids with surface tension and sloshing effects. Reduced-order model. Comput Mech 55:1071–1078. https://doi.org/10.1007/s00466-014-1091-4

  43. Fu ZJ, Chen W, Chen JT, Qu WZ (2014) Singular boundary method: three regularization approaches and exterior wave applications. CMES Comput Model Eng 99:417–443. https://doi.org/10.3970/cmes.2014.099.255

    MathSciNet  MATH  Google Scholar 

  44. Young DL, Chen KH, Liu TY, Shen LH, Wu CS (2009) Hypersingular meshless method for solving 3D potential problems with arbitrary domain. Comput Model Eng 40:225–269. https://doi.org/10.3970/cmes.2009.040.225

    MathSciNet  MATH  Google Scholar 

  45. Liu L, Zhang H (2016) Single layer regularized meshless method for three dimensional Laplace problem. Eng Anal Bound Elem 71:164–168. https://doi.org/10.1016/j.enganabound.2016.08.002

    Article  MathSciNet  MATH  Google Scholar 

  46. Li JP, Chen W (2017) A modified singular boundary method for three-dimensional high frequency acoustic wave problems. Appl Math Model. https://doi.org/10.1016/j.apm.2017.09.037

    Google Scholar 

Download references

Acknowledgements

The work was supported by the Fundamental Research Funds for the Central Universities (Grant No. 2017B709X14), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. KYCX17_0488), the National Science Funds of China (Grant Nos. 11302069, 11372097, 11572111), and the Postgraduate Scholarship Program from the China Scholarship Council (Grant No. 201706710107). We would like to thank Dr. Wenzhen Qu’s help for FMSBM programming.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Chen.

Appendices

Appendix A: The derivation of subtraction and adding-back technique

The null-fields of the boundary integral equation of the Laplace equation [44] is expressed as

$$\begin{aligned} 0=\int \limits _\Gamma {\left[ {G_0 (x,s)q(s)-\frac{\partial G_0 (x,s)}{\partial n^{e}(s)}\varphi (s)} \right] } d\Gamma (s),\quad \forall x\in \Omega ^{e},\nonumber \\ \end{aligned}$$
(A1)

where the superscript e means the exterior domain, \(G_0 \) is the fundamental solution of 3-D Laplace equation,

$$\begin{aligned} G_0 (x,s)=\frac{1}{r}. \end{aligned}$$
(A2)

To derive the non-singular expression of \(G_0 (x_i ,s_i )\) when \(x_i =s_j \), the following general solutions \(\varphi (s)\) and q(s) of the 3-D Laplace equation [32, 45] are taken

$$\begin{aligned}&f(r)=\frac{1}{2}r^{2},r=\left| {s_j -x_i } \right| , \end{aligned}$$
(A3)
$$\begin{aligned}&\varphi (s_j )=\frac{\partial f(s_j -x_i )}{\partial n^{e}(x_i )}=\left\langle {(s_j -x_i )\cdot n^{e}(x_i )} \right\rangle , \end{aligned}$$
(A4)
$$\begin{aligned}&q(s_j )=\frac{\partial \varphi (s_j )}{\partial n^{e}(s_j )}=\left\langle {n^{e}(x_i )\cdot n^{e}(s_j )} \right\rangle . \end{aligned}$$
(A5)

It is obvious that when \(x_i =s_j \), \(\varphi (s_i )=0\) and \(q(s_i )=1\). Substituting \(\varphi (s_j )\) and \(q(s_j )\) into Eq. (A1). We obtain

$$\begin{aligned}&\sum _{j=1}^N \left[ G_0 (x_i ,s_j )\left\langle {n^{e}(x_i )\cdot n^{e}(s_j )} \right\rangle \right. \nonumber \\&\left. \quad -\frac{\partial G_0 (x_i ,s_j )}{\partial n^{e}(s_j )}\left\langle {(s_j -x_i )\cdot n^{e}(x_i )} \right\rangle \right] A_j =0,\quad \forall x_i \in \Gamma .\nonumber \\ \end{aligned}$$
(A6)

With the collocation point x approaching the boundary, we get

$$\begin{aligned}&G_0 (x_i ,s_i )=-\frac{1}{A_i }\sum _{j=1\ne i}^N {\left[ {\begin{array}{l} G_0 (x_i ,s_j )\left\langle {n^{e}(x_i )\cdot n^{e}(s_j )} \right\rangle \\ -\frac{\partial G_0 (x_i ,s_j )}{\partial n^{e}(s_j )}\left\langle {(s_j -x_i )\cdot n^{e}(x_i )} \right\rangle \\ \end{array}} \right] }\nonumber \\&\quad A_j ,\quad \forall x_i \in \Gamma . \end{aligned}$$
(A7)

Considering that

$$\begin{aligned} \mathop {\lim }\limits _{r\rightarrow 0} \frac{e^{ikr}}{r}=\mathop {\lim }\limits _{r\rightarrow 0} \frac{\cos (kr)}{r}+\frac{\sin (kr)}{r}i=\mathop {\lim }\limits _{r\rightarrow 0} \frac{1}{r}+ki, \end{aligned}$$
(A8)

it is noted that the fundamental solutions of the 3-D Laplace equation and Helmholtz equation have the same order of singularity at origin [35, 46]. We hereby get

$$\begin{aligned} G(x_i ,s_i )=G_0 (x_i ,s_i )+ki,\quad r\rightarrow 0, \end{aligned}$$
(A9)

where \(G={e^{ikr}}/r\) is the fundamental solution of 3-D Helmholtz equation.

Using Eqs. (A7) and (A9), the singularities of the basis function is avoided.

Appendix B: The pseudocode of the DL-SBM

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Chen, W. & Fu, Z. A modified dual-level algorithm for large-scale three-dimensional Laplace and Helmholtz equation. Comput Mech 62, 893–907 (2018). https://doi.org/10.1007/s00466-018-1536-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-018-1536-2

Keywords

Navigation