Skip to main content
Log in

Explicit parametric solutions of lattice structures with proper generalized decomposition (PGD)

Applications to the design of 3D-printed architectured materials

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Architectured materials (or metamaterials) are constituted by a unit-cell with a complex structural design repeated periodically forming a bulk material with emergent mechanical properties. One may obtain specific macro-scale (or bulk) properties in the resulting architectured material by properly designing the unit-cell. Typically, this is stated as an optimal design problem in which the parameters describing the shape and mechanical properties of the unit-cell are selected in order to produce the desired bulk characteristics. This is especially pertinent due to the ease manufacturing of these complex structures with 3D printers. The proper generalized decomposition provides explicit parametic solutions of parametric PDEs. Here, the same ideas are used to obtain parametric solutions of the algebraic equations arising from lattice structural models. Once the explicit parametric solution is available, the optimal design problem is a simple post-process. The same strategy is applied in the numerical illustrations, first to a unit-cell (and then homogenized with periodicity conditions), and in a second phase to the complete structure of a lattice material specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Almgren RF (1985) An isotropic three-dimensional structure with Poisson’s ratio = \(-1\). J Elast 15(4):427–430

    Article  Google Scholar 

  2. Amendola A, Smith CJ, Goodall R, Auricchio F, Feo L, Benzoni G, Fraternali F (2016) Experimental response of additively manufactured metallic pentamode materials confined between stiffening plates. Compos Struct 142:254–262

    Article  Google Scholar 

  3. Ammar A, Chinesta F, Díez P, Huerta A (2010) An error estimator for separated representations of highly multidimensional models. Comput Methods Appl Mech Eng 199(25):1872–1880

    Article  MathSciNet  MATH  Google Scholar 

  4. Anthoine A (1995) Derivation of the in-plane elastic characteristics of masonry through homogenization theory. Int J Solids Struct 32(2):137–163

    Article  MATH  Google Scholar 

  5. Banerjee D, Ji C, Iizuka H (2016) Invisibility cloak with image projection capability. Sci Rep 6:38,965 EP. https://doi.org/10.1038/srep38965

    Article  Google Scholar 

  6. Bauchau OA, Craig JI (2009) Structural analysis: with applications to aerospace structures, vol 163. Springer, New York

  7. Bertoldi K, Reis PM, Willshaw S, Mullin T (2010) Negative Poisson’s ratio behavior induced by an elastic instability. Adv Mater 22(3):361–366

    Article  Google Scholar 

  8. Cadman JE, Zhou S, Chen Y, Li Q (2013) On design of multi-functional microstructural materials. J Mater Sci 48(1):51–66

    Article  Google Scholar 

  9. Chinesta F, Ammar A, Cueto E (2010) Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models. Arch Comput Methods Eng 17(4):327–350

    Article  MathSciNet  MATH  Google Scholar 

  10. Christensen J, Kadic M, Kraft O, Wegner M (2015) Vibrant times for mechanical metamaterials. MRS Commun 5:453–462

    Article  Google Scholar 

  11. Cook RD, Malkus DS, Plesha ME, Witt RJ (2002) Concepts and applications of finite element analysis, 4th edn. Wiley, New York

    Google Scholar 

  12. Elipe JCÁ, Lantada AD (2012) Comparative study of auxetic geometries by means of computer-aided design and engineering. Smart Mater Struct 21(10):105,004

    Article  Google Scholar 

  13. Ergin T, Stenger N, Brenner P, Pendry JB, Wegener M (2010) Three-dimensional invisibility cloack at optical wavelengths. Science 328:337–339

  14. Greaves GN, Greer AL, Lakes RS, Rouxel T (2011) Poisson’s ratio and modern materials. Nat Mater 10(11):823837

    Article  Google Scholar 

  15. Hopkins JB, Lange KJ, Spadaccini CM (2013) Designing microstructural architectures with thermally actuated properties using freedom, actuation and constraint topologies. J Mech Des 135(6):061,004

    Article  Google Scholar 

  16. Kadic M, Bückmann T, Schittny R, Wegener M (2013) Metamaterials beyond electromagnetism. Rep Prog Phys 76(12):126,501

    Article  Google Scholar 

  17. Kadic M, Bückmann T, Stenger N, Thiel M, Wegener M (2012) On the practicability of pentamode mechanical metamaterials. Appl Phys Lett 100(19):191,901

    Article  Google Scholar 

  18. Lantada AD, Muslija A, García-Ruíz JP (2015) Auxetic tissue engineering scaffolds with nanometric features and resonances in the megahertz range. Smart Mater Struct 24(5):055,013

    Article  Google Scholar 

  19. Lempriere B (1968) Poissons ratio in orthotropic materials. AIAA J 6(11):2226–2227

  20. Michel JC, Moulinec H, Suquet P (1999) Effective properties of composite materials with periodic microstructure: a computational approach. Comput Methods Appl Mech Eng 172:109–143

  21. Milton GW, Cherkaev A (1995) Which elasticity tensors are realizable? J Eng Mater Technol 117:483–493

    Article  Google Scholar 

  22. Modesto D, Zlotnik S, Huerta A (2015) Proper generalized decomposition for parameterized Helmholtz problems in heterogeneous and unbounded domains: application to harbor agitation. Comput Methods Appl Mech Eng 295:127–149. https://doi.org/10.1016/j.cma.2015.03.026

    Article  MathSciNet  Google Scholar 

  23. Rafsanjani A, Akbarzadeh A, Pasini D (2015) Snapping mechanical metamaterials under tension. Adv Mater 27(39):5931–5935

    Article  Google Scholar 

  24. Rafsanjani A, Pasini D (2016) Bistable auxetic mechanical metamaterials inspired by ancient geometric motifs. Extreme Mech Lett 9:291–296

    Article  Google Scholar 

  25. Reis PM (2015) A perspective on the revival of structural (in) stability with novel opportunities for function: from buckliphobia to buckliphilia. J Appl Mech Technol 82:111,001

    Article  Google Scholar 

  26. Reis PM, Jaeger HM, van Hecke M (2015) Designer matter: a perspective. Extreme Mech Lett 5:25–29

    Article  Google Scholar 

  27. Sigmund O (1994) Design of material structures using topology optimization. Ph.D. thesis, Technical University of Denmark

  28. Sigmund O (1994) Materials with prescribed constitutive parameters: an inverse homogenization problem. Int. J. Solids Struct. 31(17):2313–2329

    Article  MathSciNet  MATH  Google Scholar 

  29. Sigmund O (1995) Tailoring materials with prescribed elastic properties. Mech Mater 20:351–368

    Article  Google Scholar 

  30. Sigmund O, Torquato S (1996) Composites with extremal thermal expansion coefficients. Appl Phys Lett 69(21):3203–3205

    Article  Google Scholar 

  31. Zlotnik S, Díez P, González D, Cueto E, Huerta A (2015) Effect of the separated approximation of input data in the accuracy of the resulting PGD solution. Adv Model Simul Eng Sci. https://doi.org/10.1016/j.cma.2015.03.026

    Google Scholar 

  32. Zlotnik S, Díez P, Modesto D, Huerta A (2015) Proper generalized decomposition of a geometrically parametrized heat problem with geophysical applications. Int J Numer Methods Eng 103(10):737–758

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been supported by Ministerio de Economía y Competitividad, Grant Numbers DPI2014-51844-C2-2-R and DPI2017-85139-C2-2-R, together with Generalitat de Catalunya, Grant Number 2014-SGR-1471 and European Education, Audiovisual and Culture Executive Agency (EACEA) under the Erasmus Mundus Joint Doctorate Simulation in Engineering and Entrepreneurship Development (SEED), FPA 2013-0043.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Díez.

Appendices

Appendix A. Proper generalized decomposition algorithms

figure a
figure b

Appendix B. Analytical solutions

Given the unit-cell global stiffness matrix built by Bernoulli beam elements, \(\mathbf {K}(\varvec{\mu })\), the equations

$$\begin{aligned} \mathbf {K}(\varvec{\mu }) \, \mathbf {U}(\varvec{\mu })&= \mathbf {0} , \\ \mathbf {C}\,\mathbf {U}(\varvec{\mu })&=\mathbf {Q}(\varvec{\mu }) , \end{aligned}$$

contain equilibrium and periodicity conditions, given a specific load case in the unit-cell. If the constraints are applied using a direct method [11], then the system unknowns can be split into released and constrained such as

$$\begin{aligned} {[}\begin{array}{ll} \mathbf {C}_{\mathrm {R}}&\mathbf {C}_{\mathrm {C}} \end{array}] \; \left\{ \begin{array}{l} \mathbf {U}_{\mathrm {R}}(\varvec{\mu }) \\ \mathbf {U}_{\mathrm {C}}(\varvec{\mu }) \end{array}\right\} - \{ \mathbf {Q}(\varvec{\mu }) \} = \{ \varvec{0} \}, \end{aligned}$$

in a way that the constrained unknowns can be solved in terms of the released

(41)

The system can be solved for the released unknowns only:

$$\begin{aligned} \mathbf {K}_{\mathrm {R}}(\varvec{\mu }) \, \mathbf {U}_{\mathrm {R}}(\varvec{\mu }) = \mathbf {F}_{\mathrm {R}}(\varvec{(}\mu )), \end{aligned}$$
(42)

where

$$\begin{aligned} \begin{aligned} \mathbf {K}_{\mathrm {R}}(\varvec{\mu })&= \varvec{\varphi }^{\mathrm {T}}\,\mathbf {K}(\varvec{\mu })\,\varvec{\varphi }, \\ \mathbf {F}(\varvec{\mu })_{\mathrm {R}}&= -\varvec{\varphi }^{\mathrm {T}}\,\mathbf {K}(\varvec{\mu })\,\mathbf {Q}_{\mathrm {0}}(\varvec{\mu }). \end{aligned} \end{aligned}$$

While \(\forall \varvec{\mu } \in \mathcal {D}=I_{1}\times I_{2}\times \ldots \times I_{\texttt {n}_{\texttt {p}}}\), \(\mathbf {K}(\varvec{\mu }) \in \mathbb {R}^{({\texttt {n}_{\texttt {dof}}}\times {\texttt {n}_{\texttt {dof}}})}\), \(\mathbf {K}_{\mathrm {R}}(\varvec{\mu }) \in \mathbb {R}^{({n_{\mathrm {R}}}\times {n_{\mathrm {R}}})}\). In the unit-cell problem, \({\texttt {n}_{\texttt {dof}}}=24\) is reduced to \({n_{\mathrm {R}}}=13\). Now the system can be solved symbolically with the parameters \(\varvec{\mu } = [ t \, \, a \,\, b\, \, \alpha ]^{\textsf {T}}\).

Fig. 25
figure 25

Scaled generalized displacement solution case XX

Fig. 26
figure 26

Scaled generalized displacement solution case YY

With this, the parametric solution for case XX results:

$$\begin{aligned} \mathbf {U}_{\mathrm {R}}(\varvec{\mu }) = \left\{ \begin{array}{l} u_2 \\ v_2 \\ \theta _2 \\ u_3 \\ v_3 \\ \theta _3 \\ u_4 \\ v_4 \\ \theta _4 \\ u_5 \\ v_5 \\ \theta _5 \\ \theta _6 \end{array} \right\} = \left\{ \begin{array}{c} \frac{b(a \cos (\alpha )-b) \left( \left( a^2-4 t^2\right) \sin ^2(\alpha )-a^2\right) }{a^2 (a+2b)-2b \left( a^2-4 t^2\right) \sin ^2(\alpha )} \\ 0 \\ 0 \\ -\frac{(a \cos (\alpha )-b) \left( a^2 (a+b)-b\left( a^2-4 t^2\right) \sin ^2(\alpha )\right) }{a^2 (a+2b)-2b \left( a^2-4 t^2\right) \sin ^2(\alpha )} \\ 0 \\ 0 \\ -\frac{(a \cos (\alpha )-b) \left( a^2 (a+3b)-3b \left( a^2-4 t^2\right) \sin ^2(\alpha )\right) }{a^2 (a+2b)-2b \left( a^2-4 t^2\right) \sin ^2(\alpha )} \\ 0 \\ 0 \\ -\frac{(a \cos (\alpha )-b) \left( a^2 (2 a+3b)-3b \left( a^2-4 t^2\right) \sin ^2(\alpha )\right) }{a^2 (a+2b)-2b \left( a^2-4 t^2\right) \sin ^2(\alpha )} \\ 0 \\ 0 \\ 0 \\ \end{array} \right\} . \end{aligned}$$

Figure 25 shows a scaled analytical solution for case XX, evaluated at parameters \(b=1\), \(t=\frac{1}{40}\), \(a=0.5\), \(\alpha =60^{\circ }\) as an example.

The solution for load case YY becomes:

$$\begin{aligned} \mathbf {U}_{\mathrm {R}}(\varvec{\mu }) = \left\{ \begin{array}{l} u_2 \\ v_2 \\ \theta _2 \\ \theta _3 \\ u_4 \\ v_4 \\ \theta _4 \\ u_5 \\ v_5 \\ \theta _5 \\ u_6 \\ v_6 \\ \theta _6 \end{array} \right\} = \left\{ \begin{array}{c} -\frac{2 a b \left( a^2-4 t^2\right) \cos (\alpha ) \sin ^2(\alpha )}{a^3 + a^2 b + 4 b t^2 + b \left( a^2-4 t^2\right) \cos (2\alpha )} \\ a \sin (\alpha ) \\ 0 \\ 0 \\ -\frac{2 a b \left( a^2-4 t^2\right) \cos (\alpha ) \sin ^2(\alpha )}{a^3 + a^2 b + 4 b t^2 + b \left( a^2-4 t^2\right) \cos (2\alpha )} \\ 2 a \sin (\alpha ) \\ 0 \\ 0 \\ a \sin (\alpha ) \\ 0 \\ -\frac{a b \left( a^2-4 t^2\right) \cos (\alpha ) \sin ^2(\alpha )}{a^3 + a^2 b + 4 b t^2 + b \left( a^2-4 t^2\right) \cos (2\alpha )} \\ a \sin (\alpha ) \\ 0 \\ \end{array} \right\} . \end{aligned}$$

Figure 26 shows a scaled analytical solution for case YY, evaluated at parameters \(b=1\), \(t=\frac{1}{40}\), \(a=0.5\), \(\alpha =60^{\circ }\).

Finally, for case XY:

Figure 27 shows a scaled analytical solution for case XY, evaluated at parameters \(b=1\), \(t=\frac{1}{40}\), \(a=0.5\), \(\alpha =60^{\circ }\).

At this point, it seems worth mentioning the parametric analytical solutions have the size of a unit-cell reduced by its periodic constraints. For a full structure done by repetitions of unit-cells, or a pattern with irregularities, the cost of obtaining such expressions becomes computationally unfeasible.

Finally, the components of the effective elasticity matrix are calculated from (37) and are shown in Eqs. (43)–(48). It is worth mentioning that these results are affected by a factor of E, the Young’s modulus of the constituent material, which is here omitted for the sake of clarity:

$$\begin{aligned}&\mathrm {C}^{\mathrm{eff}}_{11}(\varvec{\mu }) = -\frac{t \csc (\alpha ) (a \cos (\alpha )-b) \left( \left( a^2-4 t^2\right) \cos (2 \alpha )+a^2+4 t^2\right) }{a \left( a^3+b \left( a^2-4 t^2\right) \cos (2 \alpha )+a^2 b+4 t^2 b\right) } \end{aligned}$$
(43)
$$\begin{aligned}&\mathrm {C}^{\mathrm{eff}}_{22}(\varvec{\mu }) = -\frac{t \sin (\alpha ) \left( a^3-a \left( a^2-4 t^2\right) \cos (2 \alpha )+4 a t^2+16 t^2 b\right) }{(a \cos (\alpha )-b) \left( a^3+b\left( a^2-4 t^2\right) \cos (2 \alpha )+a^2 b+4 t^2b\right) } \end{aligned}$$
(44)
$$\begin{aligned}&\mathrm {C}^{\mathrm{eff}}_{33}(\varvec{\mu })= -\frac{16 t^3 \sin (\alpha ) (a \cos (\alpha )-b)}{-b^2\left( a^2+5 a b-4 t^2\right) \cos (2 \alpha )+8 a^2 t^2+a^2 b^2-16\, a b\, t^2 \cos (\alpha )+5 a b^3+4 t^2 b^2} \end{aligned}$$
(45)
$$\begin{aligned}&\mathrm {C}^{\mathrm{eff}}_{12}(\varvec{\mu }) = \frac{t \left( 4 t^2-a^2\right) \sin (2 \alpha )}{a^3+b\left( a^2-4 t^2\right) \cos (2 \alpha )+a^2b+4 t^2b} \end{aligned}$$
(46)
$$\begin{aligned}&\mathrm {C}^{\mathrm{eff}}_{13}(\varvec{\mu }) = 0 \end{aligned}$$
(47)
$$\begin{aligned}&\mathrm {C}^{\mathrm{eff}}_{23}(\varvec{\mu }) = 0 \end{aligned}$$
(48)

Using (43), (45) and (46) the orthotropic Poisson’s ratios can be calculated as follows, which assumes a state of plane stress ([6]):

$$\begin{aligned} \nu _{12}^{\mathrm{eff}}(\varvec{\mu })&= \frac{\mathrm {C}^{\mathrm{eff}}_{12}(\varvec{\mu })}{\mathrm {C}^{\mathrm{eff}}_{22}(\varvec{\mu })} = \frac{2 \left( a^2-4 t^2\right) \cos (\alpha ) (a \cos (\alpha )-b)}{a^3-a \left( a^2-4 t^2\right) \cos (2 \alpha )+4 a\, t^2+16 t^2 b} \end{aligned}$$
(49)
$$\begin{aligned} \nu _{21}^{\mathrm{eff}}(\varvec{\mu })&= \frac{\mathrm {C}^{\mathrm{eff}}_{12}(\varvec{\mu })}{\mathrm {C}^{\mathrm{eff}}_{11}(\varvec{\mu })} = \frac{a \left( a^2-4 t^2\right) \sin (\alpha ) \sin (2 \alpha )}{(a \cos (\alpha )-b) \left( \left( a^2-4 t^2\right) \cos (2 \alpha )+a^2+4 t^2\right) } \end{aligned}$$
(50)
Fig. 27
figure 27

Scaled generalized displacement solution case XY

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sibileau, A., García-González, A., Auricchio, F. et al. Explicit parametric solutions of lattice structures with proper generalized decomposition (PGD). Comput Mech 62, 871–891 (2018). https://doi.org/10.1007/s00466-017-1534-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1534-9

Keywords

Navigation