Skip to main content
Log in

Uncertainty aggregation and reduction in structure–material performance prediction

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

An uncertainty aggregation and reduction framework is presented for structure–material performance prediction. Different types of uncertainty sources, structural analysis model, and material performance prediction model are connected through a Bayesian network for systematic uncertainty aggregation analysis. To reduce the uncertainty in the computational structure–material performance prediction model, Bayesian updating using experimental observation data is investigated based on the Bayesian network. It is observed that the Bayesian updating results will have large error if the model cannot accurately represent the actual physics, and that this error will be propagated to the predicted performance distribution. To address this issue, this paper proposes a novel uncertainty reduction method by integrating Bayesian calibration with model validation adaptively. The observation domain of the quantity of interest is first discretized into multiple segments. An adaptive algorithm is then developed to perform model validation and Bayesian updating over these observation segments sequentially. Only information from observation segments where the model prediction is highly reliable is used for Bayesian updating; this is found to increase the effectiveness and efficiency of uncertainty reduction. A composite rotorcraft hub component fatigue life prediction model, which combines a finite element structural analysis model and a material damage model, is used to demonstrate the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Fish J, Yu Q (2002) Computational mechanics of fatigue and life predictions for composite materials and structures. Comput Methods Appl Mech Eng 191(43):4827–4849

    Article  MATH  Google Scholar 

  2. Liu Y, Mahadevan S (2005) Multiaxial high-cycle fatigue criterion and life prediction for metals. Int J Fatigue 27(7):790–800

    Article  MATH  Google Scholar 

  3. Ghosh S, Lee K, Raghavan P (2001) A multi-level computational model for multi-scale damage analysis in composite and porous materials. Int J Solids Struct 38(14):2335–2385

    Article  MATH  Google Scholar 

  4. Crouch R, Oskay C, Clay S (2012) Multiscale modeling of damage accumulation in carbon fiber reinforced polymers subjected to fatigue. In: Proceedings of 53rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference 20th AIAA/ASME/AHS adaptive structures conference 14th AIAA, p 1615

  5. Xia Z, Curtin W, Peters P (2001) Multiscale modeling of failure in metal matrix composites. Acta Mater 49(2):273–287

    Article  Google Scholar 

  6. Rannou J, Limodin N, Réthoré J, Gravouil A, Ludwig W, Baïetto-Dubourg M-C, Buffière J-Y, Combescure A, Hild F, Roux S (2010) Three dimensional experimental and numerical multiscale analysis of a fatigue crack. Comput Methods Appl Mech Eng 199(21):1307–1325

    Article  MATH  Google Scholar 

  7. McDowell D, Dunne F (2010) Microstructure-sensitive computational modeling of fatigue crack formation. Int J Fatigue 32(9):1521–1542

    Article  Google Scholar 

  8. Bogdanor MJ, Oskay C, Clay SB (2015) Multiscale modeling of failure in composites under model parameter uncertainty. Comput Mech 56(3):389–404

    Article  MathSciNet  MATH  Google Scholar 

  9. Hu Z, Du X, Conrad D, Twohy R, Walmsley M (2014) Fatigue reliability analysis for structures with known loading trend. Struct Multidiscip Optim 50(1):9–23

    Article  Google Scholar 

  10. Li C, Mahadevan S (2016) Relative contributions of aleatory and epistemic uncertainty sources in time series prediction. Int J Fatigue 82:474–486

    Article  Google Scholar 

  11. Hu Z, Mahadevan S, Du X (2016) Uncertainty quantification of time-dependent reliability analysis in the presence of parametric uncertainty. ASCE-ASME J Risk Uncertain Eng Syst Part B Mech Eng 2(3):031005

    Article  Google Scholar 

  12. Nannapaneni S, Hu Z, Mahadevan S (2016) Uncertainty quantification in reliability estimation with limit state surrogates. Struct Multidiscip Optim 54(6):1509–1526

    Article  MathSciNet  Google Scholar 

  13. Hu Z, Mahadevan S (2016) Uncertainty quantification in prediction of material properties during additive manufacturing. Scr Mater 135:135–140

    Article  Google Scholar 

  14. Ling Y, Mullins J, Mahadevan S (2014) Selection of model discrepancy priors in Bayesian calibration. J Comput Phys 276:665–680

    Article  MathSciNet  MATH  Google Scholar 

  15. Hu Z, Ao D, Mahadevan S (2017) Calibration experimental design considering field response and model uncertainty. Comput Methods Appl Mech Eng 318:92–119

    Article  MathSciNet  Google Scholar 

  16. Zhang R, Mahadevan S (2003) Bayesian methodology for reliability model acceptance. Reliab Eng Syst Saf 80(1):95–103

    Article  Google Scholar 

  17. Wheeler OE (1972) Spectrum loading and crack growth. J Basic Eng 94(1):181–186

    Article  Google Scholar 

  18. Oskay C, Fish J (2004) Multiscale modeling of fatigue for ductile materials. Int J Multiscale Comput Eng 2(3):329–353

    Article  MATH  Google Scholar 

  19. Haldar A, Mahadevan S (2000) Probability, reliability, and statistical methods in engineering design. Wiley, New York

    Google Scholar 

  20. Devathi H, Hu Z, Mahadevan S (2016) Snap-through buckling reliability analysis under spatiotemporal variability and epistemic uncertainty. AIAA J 54:3981–3993

    Article  Google Scholar 

  21. Mahadevan S, Zhang R, Smith N (2001) Bayesian networks for system reliability reassessment. Struct Saf 23(3):231–251

    Article  Google Scholar 

  22. Hu Z, Mahadevan S, Du X (2015) Uncertainty quantification in time-dependent reliability analysis. In: Proceedings of ASME 2015 international design engineering technical conferences and computers and information in engineering conference. American Society of Mechanical Engineers, pp V02BT03A062–V002BT003A062

  23. Sankararaman S, Ling Y, Shantz C, Mahadevan S (2011) Uncertainty quantification in fatigue crack growth prognosis. Int J Progn Health Manag 2(1):15

    Google Scholar 

  24. Richardson LF (1911) The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. Philos Trans R Soc Lond Ser A 210:307–357

    Article  MATH  Google Scholar 

  25. Celik I, Karatekin O (1997) Numerical experiments on application of Richardson extrapolation with nonuniform grids. J Fluids Eng 119(3):584–590

    Article  Google Scholar 

  26. Liang B, Mahadevan S (2011) Error and uncertainty quantification and sensitivity analysis in mechanics computational models. Int J Uncertain Quant 1(2):147–161

    Article  MathSciNet  Google Scholar 

  27. Kennedy MC, O’Hagan A (2001) Bayesian calibration of computer models. J R Stat Soc Ser B (Stat Methodol) 63(3):425–464

    Article  MathSciNet  MATH  Google Scholar 

  28. Sankararaman S, Mahadevan S (2015) Integration of model verification, validation, and calibration for uncertainty quantification in engineering systems. Reliab Eng Syst Saf 138:194–209

    Article  MATH  Google Scholar 

  29. Hu Z, Du X (2015) Mixed efficient global optimization for time-dependent reliability analysis. J Mech Des 137(5):051401

    Article  Google Scholar 

  30. Xiu D, Karniadakis GE (2002) The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 24(2):619–644

    Article  MathSciNet  MATH  Google Scholar 

  31. Li C, Mahadevan S (2016) An efficient modularized sample-based method to estimate the first-order Sobolx index. Reliab Eng Syst Saf 153:110–121

    Article  Google Scholar 

  32. Li C, Mahadevan S (2016) Global sensitivity analysis for a Bayesian network. In: Proceedings of ASME 2016 international design engineering technical conferences and computers and information in engineering conference. American Society of Mechanical Engineers, pp V01AT02A023–V001AT002A023

  33. Li C, Mahadevan S (2016) Robust test resource allocation using global sensitivity analysis. In: Proceedings of 18th AIAA non-deterministic approaches conference, p 0952

  34. Gilks WR (2005) Markov chain monte carlo. Wiley Online Library, London

    Book  Google Scholar 

  35. Arulampalam MS, Maskell S, Gordon N, Clapp T (2002) A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process 50(2):174–188

    Article  Google Scholar 

  36. Committee AS (1998) AIAA guide for the verification and validation of computational fluid dynamics simulations (G-077-1998). AIAA

  37. Ling Y, Mahadevan S (2013) Quantitative model validation techniques: new insights. Reliab Eng Syst Saf 111:217–231

    Article  Google Scholar 

  38. Rebba R, Mahadevan S, Huang S (2006) Validation and error estimation of computational models. Reliab Eng Syst Saf 91(10):1390–1397

    Article  Google Scholar 

  39. Rebba R, Mahadevan S (2008) Computational methods for model reliability assessment. Reliab Eng Syst Saf 93(8):1197–1207

    Article  Google Scholar 

  40. Ferson S, Oberkampf WL, Ginzburg L (2008) Model validation and predictive capability for the thermal challenge problem. Comput Methods Appl Mech Eng 197(29):2408–2430

    Article  MATH  Google Scholar 

  41. Sankararaman S, Ling Y, Mahadevan S (2011) Uncertainty quantification and model validation of fatigue crack growth prediction. Eng Fract Mech 78(7):1487–1504

    Article  Google Scholar 

  42. Mahadevan S, Dey A, Tryon R, Wang Y, Rousseau C (2001) Reliability analysis of rotorcraft composite structures. J Aerosp Eng 14(4):140–146

    Article  Google Scholar 

  43. Ao D, Hu Z, Mahadevan S (2016) Validation of surrogate model-based life prediction for a composite rotorcraft hub component. In: Proceedings of the American Society for composites: thirty-first technical conference

  44. Murri GB, Salpekar SA, O’Brien TK (1991) Fatigue delamination onset prediction in unidirectional tapered laminates. In: Composite materials: fatigue and fracture (third volume). ASTM International, Philadelphia

  45. Hu Z, Mahadevan S (2016) Global sensitivity analysis-enhanced surrogate (GSAS) modeling for reliability analysis. Struct Multidiscip Optim 53(3):501–521

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This study was supported by funds from the National Science Foundation (Grant No. 1404823, CDSE Program) and the Air Force Office of Scientific Research (Grant No. FA9550-15-1-0018, Program Officer: Dr. David Stargel). The support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankaran Mahadevan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Mahadevan, S. & Ao, D. Uncertainty aggregation and reduction in structure–material performance prediction. Comput Mech 61, 237–257 (2018). https://doi.org/10.1007/s00466-017-1448-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1448-6

Keywords

Navigation