Skip to main content
Log in

A coupled global–local shell model with continuous interlaminar shear stresses

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper layered composite shells subjected to static loading are considered. The theory is based on a multi-field functional, where the associated Euler–Lagrange equations include besides the global shell equations formulated in stress resultants, the local in-plane equilibrium in terms of stresses and a constraint which enforces the correct shape of warping through the thickness. Within a four-node element the warping displacements are interpolated with layerwise cubic functions in thickness direction and constant shape throughout the element reference surface. Elimination of stress, warping and Lagrange parameters on element level leads to a mixed hybrid shell element with 5 or 6 nodal degrees of freedom. The implementation in a finite element program is simple. The computed interlaminar shear stresses are automatically continuous at the layer boundaries. Also the stress boundary conditions at the outer surfaces are fulfilled and the integrals of the shear stresses coincide exactly with the independently interpolated shear forces without introduction of further constraints. The essential feature of the element formulation is the fact that it leads to usual shell degrees of freedom, which allows application of standard boundary or symmetry conditions and computation of shell structures with intersections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Carrera E (2003) Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking. Arch Comput Methods Eng 10(3):215–296

    Article  MathSciNet  MATH  Google Scholar 

  2. Mittelstedt C, Becker W (2004) Interlaminar stress concentrations in layered structures, Part I: A selective literature survey on the free-edge effect since 1967. J Compos Mater 38:1037–1062

    Article  Google Scholar 

  3. Zhang Y, Yang C (2009) Recent developments in finite element analysis for laminated composite plates. Compos Struct 88:147–157

    Article  Google Scholar 

  4. Carrera E, Cinefra M, Petrolo M, Zappino E (2014) Finite element analysis of structures through unified formulation. Wiley, Chichester

    Book  MATH  Google Scholar 

  5. Carrera E, Cinefra M, Lamberti A, Petrolo M (2015) Results on best theories for metallic and laminated shells including layer-wise models. Compos Struct 126:285–298

    Article  Google Scholar 

  6. Rolfes R, Rohwer K (1997) Improved transverse shear stresses in composite finite elements based on first order shear deformation theory. Int J Numer Methods Eng 40:51–60

    Article  Google Scholar 

  7. Schürg M, Wagner W, Gruttmann F (2009) An enhanced FSDT model for the calculation of interlaminar shear stresses in composite plate structures. Comput Mech 44(6):765–776

    Article  MATH  Google Scholar 

  8. Noor AK, Burton WS, Peters JM (1990) Predictor–corrector procedure for stress and free vibration analyses of multilayered composite plates and shells. Comput Methods Appl Mech Eng 82:341–364

    Article  MATH  Google Scholar 

  9. Noor AK, Kim YH, Peters JM (1994) Transverse shear stresses and their sensitivity coefficients in multilayered composite panels. AlAA J 2:1259–1269

    Google Scholar 

  10. Manjunatha BS, Kant T (1994) On evaluation of transverse stresses in layered symmetric composite and sandwich laminates under flexure. Eng Comput 10:499–518

    Article  Google Scholar 

  11. Vidal P, Gallimard L, Polit O (2013) Proper generalized decomposition and layer-wise approach for the modeling of composite plate structures. Int J Solids Struct 50:2239–2250

    Article  Google Scholar 

  12. Auricchio F, Sacco E (1999) A mixed-enhanced finite-element for the analysis of laminated composite plates. Int J Numer Methods Eng 44:1481–1504

    Article  MATH  Google Scholar 

  13. Auricchio F, Sacco E, Vairo G (2006) A mixed FSDT finite element for monoclinic laminated plates. Comput Struct 84:624–639

    Article  Google Scholar 

  14. Auricchio F, Balduzzi G, Khoshgoftar MJ, Rahimi G, Sacco E (2014) Enhanced modeling approach for multilayer anisotropic plates based on dimension reduction method and Hellinger–Reissner principle. Compos Struct 118:622–633

    Article  Google Scholar 

  15. Carrera E (1996) \(C^0\) Reissner–Mindlin multilayered plate elements including zig-zag and interlaminar stress continuity. Int J Numer Methods Eng 39:1797–1820

    Article  MATH  Google Scholar 

  16. Brank B, Carrera E (2000) Multilayered shell finite element with interlaminar continuous shear stresses: a refinement of the Reissner–Mindlin formulation. Int J Numer Methods Eng 48:843–874

    Article  MATH  Google Scholar 

  17. Carrera E (2003) Historical review of zig-zag theories for multilayered plates and shells. Appl Mech Rev 56:237–308

    Article  Google Scholar 

  18. Reddy JN (1984) A simple high-order theory for laminated composite plates. J Appl Mech 51:745–752

    Article  MATH  Google Scholar 

  19. Ferreira A (2005) Analysis of composite plates using a layerwise shear deformation theory and multiquadratics discretization. Mech Adv Mater Struct 12:99–112

    Article  Google Scholar 

  20. Moleiro F, Mota Soares CM, Mota Soares CA, Reddy JN (2011) A layerwise mixed least-squares finite element model for static analysis of multilayered composite plates. Comput Struct 89:1730–1742

    Article  Google Scholar 

  21. Engblom JJ, Ochoa OO (1985) Through-the-thickness stress distribution for laminated plates of advanced composite materials. Int J Numer Methods Eng 21:1759–1776

    Article  MATH  Google Scholar 

  22. Reddy JN (1989) On refined computational models of composite laminates. Int J Numer Methods Eng 27:361–382

    Article  MATH  Google Scholar 

  23. Rao KM, Meyer-Piening HR (1990) Analysis of thick laminated anisotropic composite plates by the finite element method. Compos Struct 15:185–213

    Article  Google Scholar 

  24. Robbins DH, Reddy JN (1993) Modelling of thick composites using a layerwise laminate theory. Int J Numer Methods Eng 36:655–677

    Article  MATH  Google Scholar 

  25. Topdar P, Sheikh AH, Dhang N (2003) Finite element analysis of composite and sandwich plates using a continuous interlaminar shear stress model. J Sandw Struct Mat 5:207–231

    Article  Google Scholar 

  26. Gruttmann F, Wagner W (1994) On the numerical analysis of local effects in composite structures. Compos Struct 29:1–12

    Article  Google Scholar 

  27. Gruttmann F, Wagner W (1996) Coupling of 2d- and 3d-composite shell elements in linear and nonlinear applications. Comput Methods Appl Mech Eng 129:271–287

    Article  MATH  Google Scholar 

  28. Marimuthu R, Sundaresan MK, Rao GV (2003) Estimation of interlaminar stresses in laminated plates subjected to transverse loading using three-dimensional mixed finite element formulation. The Institution of Engineers (India). Tech J Aerosp Eng 84:1–8

    Google Scholar 

  29. Klinkel S, Gruttmann F, Wagner W (1999) A continuum based 3D-shell element for laminated structures. Comput Struct 71:43–62

    Article  Google Scholar 

  30. Klinkel S, Gruttmann F, Wagner W (2006) A robust non-linear solid shell element based on a mixed variational formulation. Comput Methods Appl Mech Engng 195:179–201

    Article  MATH  Google Scholar 

  31. Wagner W, Gruttmann F (2005) A robust nonlinear mixed hybrid quadrilateral shell element. Int J Numer Methods Eng 64:635–666

    Article  MATH  Google Scholar 

  32. Gruttmann F, Wagner W (2006) Structural analysis of composite laminates using a mixed hybrid shell element. Comput Mech 37:479–497

    Article  MATH  Google Scholar 

  33. Dvorkin E, Bathe KJ (1984) A continuum mechanics based four node shell element for general nonlinear analysis. Eng Comput 1:77–88

    Article  Google Scholar 

  34. Taylor RL (2015) FEAP. http://www.ce.berkeley.edu/projects/feap/

  35. MacNeal RH, Harder RL (1985) A proposed standard set of problems to test finite element accuracy. Finite Elem Anal Des 1:3–20

    Article  Google Scholar 

Download references

Acknowledgments

The financial support of the Deutsche Forschungsgemeinschaft (DFG) for the third author is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Wagner.

Appendices

Appendix 1: Data for some selected stress distributions

1.1 Symmetric cross-ply laminate \([0^{\circ }/90^{\circ }/0^{\circ }]\)

Table 3 \(\tau _{xz}\) at \((x_p=21.429 \, \text {mm} , y_p=0, z)\) for a cross-ply laminate \([0^{\circ }/90^{\circ }/0^{\circ }]\), see Fig. 7
Table 4 \(\tau _{yz}\) at \((x_p=0 , y_p=21.429 \, \text {mm}, z)\) for a cross-ply laminate \([0^{\circ }/90^{\circ }/0^{\circ }]\), see Fig. 8

1.2 Unsymmetric cross-ply laminate \([0^{\circ }/90^{\circ }]\)

Table 5 \(\tau _{xz}\) at \((x_p=21.429\, \text {mm}, y_p=0, z)\) for an unsymmetric lay-up \([0^{\circ }/90^{\circ }]\), see Fig. 11

1.3 Angle-ply laminate with 3 layers \([45^{\circ }/{-}45^{\circ }/45^{\circ }]\)

Table 6 \(\tau _{xz}\) at \((x_p=21.429\, \text {mm}, y_p=0, z)\) for an angle ply lay-up \([45^{\circ }/{-}45^{\circ }/45^{\circ }]\), see Fig. 13
Table 7 \(\tau _{xz}\) at \((x_p=10.937\, \text {mm}, y_p=14.062\, \text {mm}, z)\) for an angle ply lay-up \([45^{\circ }/{-}45^{\circ }/45^{\circ }]\), see Fig. 14
Table 8 \(\tau _{yz}\) at \((x_p=10.937\, \text {mm}, y_p=14.062\, \text {mm}, z)\) for an angle ply lay-up \([45^{\circ }/{-}45^{\circ }/45^{\circ }]\), see Fig. 15

Appendix 2: Interpolation matrices of the mixed element formulation

The transverse shear strains at the midside nodes ABCD of the element are as follows

$$\begin{aligned} \begin{array}{rclrcl} \gamma ^M_\xi &{}=&{} [\mathbf{u},_\xi \cdot \bar{\mathbf{D}} + \mathbf{X},_\xi \cdot \Delta \mathbf{d}]^M &{} \qquad M &{}=&{} B,D \\ \gamma ^L_\eta &{}=&{} [\mathbf{u},_\eta \cdot \bar{\mathbf{D}} + \mathbf{X},_\eta \cdot \Delta \mathbf{d}]^L &{} \qquad L &{}=&{} A,C \\ \end{array} \end{aligned}$$
(66)

where the following quantities are given with the bilinear interpolation (44)–(47)

$$\begin{aligned} \bar{\mathbf{D}}^A= & {} \frac{1}{2} \, (\bar{\mathbf{D}}_{4} + \bar{\mathbf{D}}_{1})\qquad \Delta \mathbf{d}^A = \frac{1}{2} \, (\Delta \mathbf{d}_{4} + \Delta \mathbf{d}_{1}) \nonumber \\ \bar{\mathbf{D}}^B= & {} \frac{1}{2} \, (\bar{\mathbf{D}}_{1} + \bar{\mathbf{D}}_{2})\qquad \Delta \mathbf{d}^B = \frac{1}{2} \, (\Delta \mathbf{d}_{1} + \Delta \mathbf{d}_{2}) \nonumber \\ \bar{\mathbf{D}}^C= & {} \frac{1}{2} \, (\bar{\mathbf{D}}_{2} + \bar{\mathbf{D}}_{3})\qquad \Delta \mathbf{d}^C = \frac{1}{2} \, (\Delta \mathbf{d}_{2} + \Delta \mathbf{d}_{3}) \nonumber \\ \bar{\mathbf{D}}^D= & {} \frac{1}{2} \, (\bar{\mathbf{D}}_{3} + \bar{\mathbf{D}}_{4})\qquad \Delta \mathbf{d}^D = \frac{1}{2} \, (\Delta \mathbf{d}_{3} + \Delta \mathbf{d}_{4}) \nonumber \\ \mathbf{X}^A ,_\eta= & {} \frac{1}{2}\, (\mathbf{X}_4 -\mathbf{X}_1)\qquad \mathbf{u}^A, _\eta = \frac{1}{2}\, (\mathbf{u}_{4} - \mathbf{u}_{1}) \nonumber \\ \mathbf{X}^B ,_\xi= & {} \frac{1}{2}\, (\mathbf{X}_2 -\mathbf{X}_1)\qquad \mathbf{u}^B, _\xi = \frac{1}{2}\, (\mathbf{u}_{2} - \mathbf{u}_{1}) \nonumber \\ \mathbf{X}^C ,_\eta= & {} \frac{1}{2}\, (\mathbf{X}_3 -\mathbf{X}_2)\qquad \mathbf{u}^C, _\eta =\frac{1}{2}\, (\mathbf{u}_{3} - \mathbf{u}_{2}) \nonumber \\ \mathbf{X}^D ,_\xi= & {} \frac{1}{2}\, (\mathbf{X}_3 -\mathbf{X}_4)\qquad \mathbf{u}^D, _\xi = \frac{1}{2}\, (\mathbf{u}_{3} - \mathbf{u}_{4}). \end{aligned}$$
(67)

The matrix \(\mathbf{B} =[\mathbf{B}_1, \mathbf{B}_2, \mathbf{B}_3, \mathbf{B}_4]\) follows with

$$\begin{aligned}&\mathbf{B}_I = \left[ \begin{array}{l@{\quad }l} N_I,_1 \, \mathbf{X}^T,_1 &{}\quad \mathbf{0} \\ N_I,_2 \, \mathbf{X}^T,_2 &{}\quad \mathbf{0} \\ N_I,_1 \, \mathbf{X}^T,_2 + N_I,_2 \, \mathbf{X}^T,_1 &{}\quad \mathbf{0} \\ N_I,_1 \, \bar{\mathbf{D}}^T , _1 &{}\quad N_I,_1 \, \mathbf{b}^T_{I1} \\ N_I,_2 \, \bar{\mathbf{D}}^T,_2 &{}\quad N_I,_2 \, \mathbf{b}^T_{I2} \\ N_I,_1 \, \bar{\mathbf{D}}^T,_2 +N_I,_2 \, \bar{\mathbf{D}}^T,_1 &{}\quad N_I,_1 \, \mathbf{b}^T_{I2} +N_I,_2 \, \mathbf{b}^T_{I1} \\ \mathbf{J}^{-1} \, \left\{ \begin{array}{l} N_I,_\xi \, \bar{\mathbf{D}}_M^T \\ N_I,_\eta \, \bar{\mathbf{D}}_L^T \\ \end{array} \right\} &{}\quad \mathbf{J}^{-1} \, \left\{ \begin{array}{l} N_I,_\xi \, \xi _I \, \mathbf{b}_{M}^T \\ N_I,_\eta \, \eta _I \, \mathbf{b}_{L}^T \\ \end{array} \right\} \end{array} \right] \nonumber \\ \end{aligned}$$
(68)

We denote by \( \mathbf{b}_{I \alpha } = \mathbf{T}^T_I \, \mathbf{X},_\alpha \), \( \mathbf{b}_{M} = \mathbf{T}^T_I \, \mathbf{X}^M,_\xi \; \) and \( \mathbf{b}_{L} = \mathbf{T}^T_I \, \mathbf{X}^L,_\eta \,, \) where \(\mathbf{T}_I\) is introduced in (50). The allocation of the midside nodes to the corner nodes is given by \( (I,M,L) \in \{(1,B,A); (2,B,C); (3,D,C); (4,D,A) \} \,. \) To alleviate the notation the superscript h is omitted in the matrix.

According to [32] the interpolation matrix \(\mathbf{N}_\sigma \) reads

$$\begin{aligned} \mathbf{N}_{\sigma } = \left[ \begin{array}{cccccc} \mathbf{1}_3 &{} \quad \mathbf{0} &{}\quad \mathbf{0} &{}\quad \mathbf{N}^m_{\sigma } &{}\quad \mathbf{0} &{}\quad \mathbf{0} \\ \mathbf{0} &{}\quad \mathbf{1}_3 &{} \quad \mathbf{0} &{}\quad \mathbf{0} &{} \quad \mathbf{N}^b_{\sigma } &{} \quad \mathbf{0} \\ \mathbf{0} &{}\quad \mathbf{0} &{}\quad \mathbf{1}_2 &{} \quad \mathbf{0} &{} \quad \mathbf{0} &{} \quad \mathbf{N}^s_{\sigma } \\ \end{array}\right] \end{aligned}$$
(69)

where

$$\begin{aligned} \mathbf{N}^m_\sigma= & {} \mathbf{N}^b_\sigma = \mathbf{T}^0_\sigma \, \left[ \begin{array}{l@{\quad }l} \eta -\bar{\eta } &{} 0 \\ 0 &{} \xi -\bar{\xi } \\ 0 &{} 0 \\ \end{array} \right] \qquad \nonumber \\ \mathbf{N}^s_\sigma= & {} \tilde{\mathbf{T}}^0_\sigma \, \left[ \begin{array}{l@{\quad }l} \eta -\bar{\eta } &{} 0 \\ 0 &{} \xi -\bar{\xi } \\ \end{array} \right] \end{aligned}$$
(70)

with the coordinates \( \bar{\xi } = \displaystyle \frac{1}{A_e} \int \limits _{\Omega _e} \xi \, \,\text {d}A \) and \( \bar{\eta } = \displaystyle \frac{1}{A_e} \int \limits _{\Omega _e} \eta \, \,\text {d}A \) as well as

$$\begin{aligned}&\mathbf{T}^0_\sigma = \left[ \begin{array}{l@{\quad }l@{\quad }l} J^0_{11}J^0_{11} \quad &{} J^0_{21}J^0_{21} \quad &{} 2 J^0_{11}J^0_{21}\\ J^0_{12}J^0_{12}\quad &{} J^0_{22}J^0_{22} \quad &{} 2 J^0_{12}J^0_{22} \\ J^0_{11}J^0_{12} \quad &{} J^0_{21}J^0_{22}\quad &{} J^0_{11}J^0_{22} + J^0_{12}J^0_{21} \\ \end{array} \right] \nonumber \\&\quad \tilde{\mathbf{T}}^0_\sigma = \left[ \begin{array}{c@{\quad }c} J^0_{11} &{} J^0_{21} \\ J^0_{12} &{} J^0_{22} \\ \end{array} \right] _{\,.} \end{aligned}$$
(71)

The constants \(J_{\alpha \beta }^0 = J_{\alpha \beta } (\xi =0, \eta = 0)\) are the components of \(\mathbf{J}\) in Eq. (46) evaluated at the element centre.

Again from [32] it holds for \(\mathbf{N}_\varepsilon ^1\)

$$\begin{aligned} \mathbf{N}_\varepsilon ^1 = \left[ \begin{array}{cccccc} \mathbf{1}_3 &{}\quad \mathbf{0} &{}\quad \mathbf{0} &{} \mathbf{N}^{m1}_\varepsilon &{}\quad \mathbf{0} &{}\quad \mathbf{0} \\ \mathbf{0} &{}\quad \mathbf{1}_3 &{}\quad \mathbf{0} &{} \mathbf{0} &{} \quad \mathbf{N}^{b1}_\varepsilon &{} \quad \mathbf{0} \\ \mathbf{0} &{}\quad \mathbf{0} &{} \quad \mathbf{1}_2 &{} \mathbf{0} &{}\quad \mathbf{0} &{} \quad \mathbf{N}^{s1}_\varepsilon \\ \end{array} \right] \end{aligned}$$
(72)

where

$$\begin{aligned} \mathbf{N}^{m1}_\varepsilon = \mathbf{N}^{b1}_\varepsilon = \mathbf{T}^0_\varepsilon \, \left[ \begin{array}{ll} \eta -\bar{\eta } &{}\quad 0 \\ 0 &{}\quad \xi -\bar{\xi } \\ 0 &{}\quad 0 \end{array} \right] \qquad \mathbf{N}^{s1}_\varepsilon = \mathbf{N}^s_\sigma \end{aligned}$$
(73)

and

$$\begin{aligned} \mathbf{T}^0_\varepsilon = \left[ \begin{array}{lll} J^0_{11}J^0_{11} &{}\quad J^0_{21}J^0_{21} &{} \quad J^0_{11}J^0_{21} \\ J^0_{12}J^0_{12} &{}\quad J^0_{22}J^0_{22} &{}\quad J^0_{12}J^0_{22} \\ 2 J^0_{11}J^0_{12} &{}\quad 2 J^0_{21}J^0_{22} &{}\quad J^0_{11}J^0_{22} + J^0_{12}J^0_{21} \end{array} \right] _{\,.} \end{aligned}$$
(74)

A further part with special interpolation functions has been introduced in [32] to improve the membrane and bending behaviour of the element. These functions are constructed orthogonal to the stress resultant interpolation. For the sake of convenience this part is omitted here.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gruttmann, F., Wagner, W. & Knust, G. A coupled global–local shell model with continuous interlaminar shear stresses. Comput Mech 57, 237–255 (2016). https://doi.org/10.1007/s00466-015-1229-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1229-z

Keywords

Navigation