Skip to main content
Log in

A unified computational framework for bulk and surface elasticity theory: a curvilinear-coordinate-based finite element methodology

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A curvilinear-coordinate-based finite element methodology is presented as a basis for a straightforward computational implementation of the theory of surface elasticity that mimics the underlying mathematical and geometrical concepts. An efficient formulation is obtained by adopting the same methodology for both the bulk and the surface. The key steps to evaluate the hyperelastic constitutive relations at the level of the quadrature point in a finite element scheme using this unified approach are provided. The methodology is illustrated through selected numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The documented program can be found at http://www.cerecam.uct.ac.za/code/surface_energy/doc/html/.

  2. Note that we distinguish between the material, spatial and natural configurations. A line element \(\text{ d }{\varvec{X}}\) in the material configuration is mapped to \(\text{ d }{\varvec{x}}\) in the spatial configuration via the linear map \({\varvec{F}}\) and to \(\text{ d }\varvec{\xi }\) in the natural (reference) configuration via \(\varvec{K}\), see Table 3. The material, spatial and natural configurations on the surface are defined in a near-identical fashion to the bulk, see Table 4.

  3. The routine used, rsgene2D, produces a Gaussian height distribution with an exponential auto-covariance. The input parameters were 100 divisions, a surface length of 2, a root mean square height of 0.05, and an (isotropic) correlation length of \(0.25\).

References

  1. Agrawal R, Peng B, Gdoutos EE, Espinosa HD (2008) Elasticity size effects in ZnO nanowires: a combined experimental–computational approach. Nano Lett 8(11):3668–3674

    Article  Google Scholar 

  2. Altenbach H, Eremeyev V (2011) On the shell theory on the nanoscale with surface stresses. Int J Eng Sci 49(12):1294–1301

    Article  MathSciNet  Google Scholar 

  3. Bangerth W, Hartmann R, Kanschat G (2007) deal.II: A general purpose object oriented finite element library. ACM Trans Math Softw 33(4):24

    Article  MathSciNet  Google Scholar 

  4. Bangerth W, Heister T, Kanschat G et al (2013) deal.II Differential equations analysis library, Technical Reference http://www.dealii.org

  5. Benveniste Y, Berdichevsky O (2010) On two models of arbitrarily curved three-dimensional thin interphases in elasticity. Int J Solids Struct 47(1415):1899–1915

    Article  MATH  Google Scholar 

  6. Benveniste Y, Miloh T (2001) Imperfect soft and stiff interfaces in two-dimensional elasticity. Mech Mater 33(6):309–323

    Article  Google Scholar 

  7. Bergström D (2013) http://www.mysimlabs.com/surface/generation.html

  8. Cammarata RC (1994) Surface and interface stress effects in thin films. Prog Surf Sci 46(1):1–38

    Google Scholar 

  9. Ciarlet PG (2005) An introduction to differential geometry with applications to elasticity. J Elast 78:1–215

    Article  MathSciNet  Google Scholar 

  10. Davydov D, Javili A, Steinmann P (2013) On molecular statics and surface-enhanced continuum modeling of nano-structures. Comput Mater Sci 69:510–519

    Article  Google Scholar 

  11. DeSimone A, Heltai L, Manigrasso C (2009) Tools for the solution of pdes defined on curved manifolds with deal.ii. http://www.dealii.org/7.3.0/reports/codimension-one/desimone-heltai-manigrasso.pdf

  12. Dettmer W, Perić D (2006) A computational framework for free surface fluid flows accounting for surface tension. Comput Methods Appl Mech Eng 195(23–24):3038–3071

    Article  MATH  Google Scholar 

  13. Dingreville R, Qu J (2007) A semi-analytical method to compute surface elastic properties. Acta Mater 55(1):141–147

    Article  Google Scholar 

  14. Dingreville R, Qu J, Cherkaoui M (2005) Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J Mech Phys Solids 53(8):1827–1854

    Article  MATH  MathSciNet  Google Scholar 

  15. Duan H, Wang J, Karihaloo B (2009) Theory of elasticity at the nonoscale. Adv Appl Mech 42:1–68

    Article  Google Scholar 

  16. Duan HL, Karihaloo BL (2007) Effective thermal conductivities of heterogeneous media containing multiple imperfectly bonded inclusions. Physi Rev B 75:64206

    Article  Google Scholar 

  17. Duan HL, Wang J, Huang ZP, Karihalo BL (2005) Eshelby formalism for nano-inhomogeneities. Proc R Soc A 461(2062):3335–3353

    Article  MATH  Google Scholar 

  18. Fischer FD, Svoboda J (2010) Stresses in hollow nanoparticles. Sci Direct 47:2799–2805

    MATH  Google Scholar 

  19. Green AE, Zerna W (1968) Theoretical elasticity. Oxford University Press, Oxford

    MATH  Google Scholar 

  20. Gu ST, He Q-C (2011) Interfacial discontinuity relations for coupled multifield phenomena and their application to the modeling of thin interphases as imperfect interfaces. J Mech Phys Solids 59(7):1413–1426

    Article  MATH  MathSciNet  Google Scholar 

  21. Gurtin ME, Murdoch AI (1975) A continuum theory of elastic material surfaces. Arch Ration Mech Anal 57(4):291–323

    Article  MATH  MathSciNet  Google Scholar 

  22. He J, Lilley CM (2008) Surface effect on the elastic behavior of static bending nanowires. Nano Lett 8(7):1798–1802

    Article  Google Scholar 

  23. Heltai L (2008) On the stability of the finite element immersed boundary method. Comput Struct 86(7–8):598–617

    Article  Google Scholar 

  24. Herring C (1951) Some theorems on the free energies of crystal surfaces. Phys Rev 82(1):87–93

    Article  MATH  Google Scholar 

  25. Huang Z, Sun L (2007) Size-dependent effective properties of a heterogeneous material with interface energy effect: from finite deformation theory to infinitesimal strain analysis. Acta Mech 190:151–163

    Article  MATH  Google Scholar 

  26. Hung Z, Wang J (2006) A theory of hyperelasticity of multi-phase media with surface/interface energy effect. Acta Mech 182:195–210

    Article  Google Scholar 

  27. Itskov M (2007) Tensor algebra and tensor analysis for engineers. Springer, Berlin

    MATH  Google Scholar 

  28. Javili A, McBride A, Steinmann P (2013) Thermomechanics of solids with lower-dimensional energetics: on the importance of surface, interface and curve structures at the nanoscale. A unifying review. Appl Mech Rev 65(1):010802

    Article  Google Scholar 

  29. Javili A, McBride A, Steinmann P, Reddy BD (2012) Relationships between the admissible range of surface material parameters and stability of linearly elastic bodies. Philos Mag 92:3540–3563

    Article  Google Scholar 

  30. Javili A, Steinmann P (2009) A finite element framework for continua with boundary energies. Part I: the two-dimensional case. Comput Methods Appl Mech Eng 198(27–29):2198–2208

    Article  MATH  MathSciNet  Google Scholar 

  31. Javili A, Steinmann P (2010a) A finite element framework for continua with boundary energies. Part II: the three-dimensional case. Comput Methods Appl Mech Eng 199(9–12):755–765

    Article  MATH  MathSciNet  Google Scholar 

  32. Javili A, Steinmann P (2010b) On thermomechanical solids with boundary structures. Int J Solids Struct 47(24):3245–3253

    Article  MATH  Google Scholar 

  33. Javili A, Steinmann P (2011) A finite element framework for continua with boundary energies. Part III: the thermomechanical case. Comput Methods Appl Mech Eng 200(21–22):1963–1977

    Article  MATH  MathSciNet  Google Scholar 

  34. Kreyszig E (1991) Differential geometry. Dover Publications, New York

    Google Scholar 

  35. Levitas VI (2013) Thermodynamically consistent phase field approach to phase transformations with interface stresses. Acta Mater 61:4305–4319

    Article  Google Scholar 

  36. McBride A, Javili A (2013) An efficient finite element implementation for problems in surface elasticity.

  37. Miller RE, Shenoy VB (2000) Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11(3):139

    Article  Google Scholar 

  38. Orowan E (1970) Surface energy and surface tension in solids and liquids. Proc R Soc 316:473–491

    Article  Google Scholar 

  39. Park HS, Klein PA (2007) Surface Cauchy–Born analysis of surface stress effects on metallic nanowires. Phys Rev B 75(8):1–9

    Article  Google Scholar 

  40. Park HS, Klein PA (2008) A Surface Cauchy–Born model for silicon nanostructures. Comput Methods Appl Mech Eng 197(41–42):3249–3260

    Article  MATH  MathSciNet  Google Scholar 

  41. Park HS, Klein PA, Wagner GJ (2006) A surface Cauchy–Born model for nanoscale materials. Int J Numer Methods Eng 68(10):1072–1095

    Article  MATH  MathSciNet  Google Scholar 

  42. Saksono PH, Perić D (2005) On finite element modelling of surface tension variational formulation and applications. Part I: quasistatic problems. Comput Mech 38(3):265–281

    Article  Google Scholar 

  43. Scriven LE (1960) Dynamics of a fluid interface equation of motion for newtonian surface fluids. Chem Eng Sci 12(2):98–108

    Article  Google Scholar 

  44. Scriven LE, Sternling CV (1960) The marangoni effects. Nature 187:186–188

    Article  Google Scholar 

  45. Sharma P, Ganti S (2004) Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies. J Appl Mech 71:663–671

    Article  MATH  Google Scholar 

  46. Sharma P, Ganti S, Bhate N (2003) Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl Phys Lett 82(4):535–537

  47. Sharma P, Wheeler LT (2007) Size-dependent elastic state of ellipsoidal nano-inclusions incorporating surface/interface tension. J Appl Mech 74(3):447–454

    Article  MATH  MathSciNet  Google Scholar 

  48. Shenoy VB (2005) Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys Rev B 71(9):1–11

  49. Shuttleworth R (1950) The surface tension of solids. Proc Phys Soc Sect A 63(5):444–457

    Article  Google Scholar 

  50. Steigmann DJ (2009) A concise derivation of membrane theory from three-dimensional nonlinear elasticity. J Elast 97:97–101

  51. Sussmann C, Givoli D, Benveniste Y (2011) Combined asymptotic finite-element modeling of thin layers for scalar elliptic problems. Comput Methods Appl Mech Eng 200(4748):3255–3269

    Article  MATH  MathSciNet  Google Scholar 

  52. Wang Y, Weissmüller J, Duan HL (2010a) Mechanics of corrugated surfaces. J Mech Phys Solids 58:1552–1566

    Article  MATH  MathSciNet  Google Scholar 

  53. Wang Z-Q, Zhao Y-P, Huang Z-P (2010b) The effects of surface tension on the elastic properties of nano structures. Int J Eng Sci 48(2):140–150

    Article  MathSciNet  Google Scholar 

  54. Wei GW, Shouwen Y (2006) Finite element characterization of the size-dependent mechanical behaviour in nanosystems. Nanotechnology 17(4):1118–1122

    Article  Google Scholar 

  55. Weissmüller J, Duan H-L, Farkas D (2010) Deformation of solids with nanoscale pores by the action of capillary forces. Acta Mater 58(1):1–13

    Article  Google Scholar 

  56. Wriggers P (2008) Nonlinear finite element methods. Springer, Berlin

    MATH  Google Scholar 

  57. Yun G, Park HS (2009) Surface stress effects on the bending properties of fcc metal nanowires. Phys Rev B 79(19):32–35

    Article  Google Scholar 

  58. Yvonnet J, Mitrushchenkov A, Chambaud G, He Q-C (2011) Finite element model of ionic nanowires with size-dependent mechanical properties determined by ab initio calculations. Comput Methods Appl Mech Eng 200(5–8):614–625

    Article  MATH  MathSciNet  Google Scholar 

  59. Yvonnet J, Quang HL, He Q-C (2008) An XFEM level set approach to modelling surface–interface effects and computing the size-dependent effective properties of nanocomposites. Comput Mech 42(1):119–131

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Javili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javili, A., McBride, A., Steinmann, P. et al. A unified computational framework for bulk and surface elasticity theory: a curvilinear-coordinate-based finite element methodology. Comput Mech 54, 745–762 (2014). https://doi.org/10.1007/s00466-014-1030-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-014-1030-4

Keywords

Navigation