Skip to main content
Log in

Controlling vibrations of a cutting process using predictive control

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Unwanted vibrations in machining are detrimental to the equipment and the quality of the result. Notably chatter vibrations due to the regenerative effect are difficult to control and limit the achievable results. Typically, active and passive means are employed to prevent chatter from happening. This work proposes a predictive control strategy that actively uses information about the system past to predict future disturbances. Using those predicitions allows to counter the regenerative effect more effectively. The strategy is tested in simulation and improves the dynamic stability of the system greatly. It is robust with respect to quantitative errors in the disturbance predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Altintas Y (2012) Manufacturing automation. Cambridge University Press, Cambridge

    Google Scholar 

  2. Ambrósio JAC (2009) Distributed deformation: a finite element method. In: Ambrósio JAC, Eberhard P (eds) Advanced design of mechanical systems: from analysis to optimization. Springer, Berlin, pp 351–374

    Google Scholar 

  3. Antoulas A (2005) Approximation of large-scale dynamical systems. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  4. Armarego EJ, Brown RH (1969) The machining of metals. Prentice-Hall, London

    Google Scholar 

  5. Bayly PV, Halley JE, Mann BP, Davies MA (2003) Stability of interrupted cutting by temporal finite element analysis. J Manuf Sci Eng 125(2):220–225

    Article  Google Scholar 

  6. Brecher C, Manoharan D, Ladra U, Köpken HG (2010) Chatter suppression with an active workpiece holder. Prod Eng 4(2–3):239–245

    Article  Google Scholar 

  7. Fehr J (2011) Automated and error controlled model reduction in elastic multibody systems. Schriften aus dem Institut für Technische und Numerische Mechanik der Universität Stuttgart, Shaker Verlag, Aachen

  8. Fischer A, Eberhard P (2011) Simulation-based stability analysis of a thin-walled cylinder during turning with improvements using an adaptronic turning chisel. Arch Mech Eng 58(4):367–391

    Google Scholar 

  9. Fischer A, Eberhard P, Ambrósio J (2013) Parametric flexible multibody model for material removal during turning. J Comput Nonlinear Dyn 9(1):011007. doi:10.1115/1.402528

    Article  Google Scholar 

  10. Fletcher R (2000) Practical methods of optimization. Wiley, Chichester

    Book  Google Scholar 

  11. Ganguli A, Deraemaeker A, Preumont A (2007) Regenerative chatter reduction by active damping control. J Sound Vib 300(3–5):847–862

    Article  Google Scholar 

  12. Henninger C, Eberhard P (2005) Avoiding chatter by tuning the dynamics of the machine structure with a damped vibration absorber. In: Proceedings of the 5th Euromech Nonlinear Dynamics Conference, Eindhoven

  13. Insperger T, Stépán G (2011) Semi-discretization for time-delay systems. Springer, New York

    Book  MATH  Google Scholar 

  14. Kienzle O (1952) Die Bestimmung von Kräften und Leistungen and spanenden Werkzeugen und Werkzeugmaschinen (in German). Zeitschrift des Vereins Deutscher Ingenieure 94:299–305

    Google Scholar 

  15. König W, Essel K, Witte L (1981) Specific cutting force data for metal-cutting. Verein Deutscher Eisen-hüttenleute, Düsseldorf

    Google Scholar 

  16. Muske KR, Meadows ES, Rawlings JB (1994) The stability of constrained receding horizon control with State estimation. In: Proceedings of the 1994 American Control Conference, pp. 2837–2841

  17. Rawlings JB, Mayne DQ (2009) Model predictive control: theory and design. Nob Hill, Madison

    Google Scholar 

  18. Shabana AA (2005) Dynamics of multibody systems. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  19. Sims ND (2007) Vibration absorbers for chatter suppression: a new analytical tuning methodology. J Sound Vib 301(3–5):592–607

    Article  Google Scholar 

  20. Stépán G (1998) Delay-differential equation models for machine tool chatter. In: Dynamics and chaos in manufacturing processes, pp. 165–192

  21. Tobias SA (1965) Machine-tool vibration. Blackie and Sons, London

    Google Scholar 

  22. Tobias SA, Fishwick W (1958) Theory of regenerative machine tool chatter. Engineer 205:199–203

    Google Scholar 

  23. Wallrapp O (1994) Standardization of flexible body modeling in multibody system codes, part I: Definition of standard input data. Mech Struct Mach 22(3):283–304

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the German Research Foundation (DFG) for financial support of the project within the Cluster of Excellence in Simulation Technology (EXC 310/1) at the University of Stuttgart.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Eberhard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischer, A., Eberhard, P. Controlling vibrations of a cutting process using predictive control. Comput Mech 54, 21–31 (2014). https://doi.org/10.1007/s00466-014-1014-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-014-1014-4

Keywords

Navigation