Skip to main content
Log in

A versatile interface model for thermal conduction phenomena and its numerical implementation by XFEM

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A general interface model is presented for thermal conduction and characterized by two jump relations. The first one expresses that the temperature jump across an interface is proportional to the interfacial average of the normal heat flux while the second one states that the normal heat flux jump is proportional to the surface Laplacian of the interfacial average of the temperature. By varying the two scalar proportionality parameters, not only the Kapitza resistance and highly conducting interface models can be retrieved but also all the intermediate cases can be covered. The general interface model is numerically implemented by constructing its weak form and by using the level-set method and XFEM. The resulting numerical procedure, whose accuracy and robustness are thoroughly tested and discussed with the help of a benchmark problem, is shown to be efficient for solving the problem of thermal conduction in particulate composites with various imperfect interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Kapitza PL (1941) Heat transfer and superfluidity of helium II. Phys Rev 60:354–355. doi:10.1103/PhysRev.60.354

    Article  Google Scholar 

  2. Johnson R, Little W (1963) Experiments on the Kapitza resistance. Phys Rev 130:596–604. doi:10.1103/PhysRev.130.596

    Article  Google Scholar 

  3. Pollack GL (1969) Kapitza resistance. Rev Mod Phys 41:48–81. doi:10.1103/RevModPhys.41.48

    Article  Google Scholar 

  4. Nan CW, Birringer R (1998) Determining the Kapitza resistance and the thermal conductivity of polycrystals: a simple model. Phys Rev B 57:8264–8268. doi:10.1103/PhysRevB.57.8264

    Article  Google Scholar 

  5. Yvonnet J, He QC, Zhu QZ, Shao JF (2011) A general and efficient computational procedure for modelling the Kapitza thermal resistance based on XFEM. Comput Mater Sci 50:1220–1224. doi:10.1016/j.commatsci.2010.02.040

    Article  Google Scholar 

  6. Le-Quang H, He QC (2011) Eshelby’s tensor fields and effective conductivity of composites made of anisotropic phases with Kapitza’s interface thermal resistance. Philos Mag 91:3358–3392

    Article  Google Scholar 

  7. Javili A, McBride A, Steinmann P (2012) Numerical modelling of thermalmechanical solids with mechanically energetic (generalised) Kapitza interfaces. Comput Mater Sci 65:542–551. doi:10.1016/j.commatsci.2012.06.006

    Article  Google Scholar 

  8. Cheng H, Torquato S (1997) Effective conductivity of dispersions of spheres with a superconducting interface. Proc R Soc Lond Ser A 453:1331–1344. doi:10.1098/rspa1997.0009 1997.0009

    Article  MathSciNet  Google Scholar 

  9. Lipton R (1997) Variational methods, bounds and size effects for composites with highly conducting interface. J Mech Phys Solids 45:361–384. doi:10.1016/S0022-5096(96)00097-X

    Article  MATH  MathSciNet  Google Scholar 

  10. Lipton R (1997) Reciprocal relations, bounds, and size effects for composites with highly conducting interface. SIAM J Appl Math 57:342–363. doi:10.1137/S0036139995291180

    Article  MathSciNet  Google Scholar 

  11. Duan HL, Karihaloo BL (2007) Effective thermal conductivities of heterogeneous media containing multiple imperfectly bonded inclusions. Phys Rev B 75:064206. doi:10.1103/PhysRevB.75.064206

    Article  Google Scholar 

  12. Yvonnet J, He QC, Toulemonde C (2008) Numerical modelling of the effective conductivities of composites with arbitrarily shaped inclusions and highly conducting interface. Compos Sci Technol 68:2818–2825. doi:10.1016/j.compscitech.2008.06.008

    Article  Google Scholar 

  13. Le-Quang H, Bonnet G, He QC (2010) Size-dependent Eshelby tensor fields and effective conductivity of composites made of anisotropic phases with highly conducting imperfect interfaces. Phys Rev B 81:064203. doi:10.1103/PhysRevB.81.064203

    Article  Google Scholar 

  14. Javili A, McBride A, Steinmann P (2013) Numerical modelling of thermomechanical solids with highly conductive energetic interfaces. Int J Numer Method Eng 93:551–574. doi:10.1002/nme.4402

    Article  MathSciNet  Google Scholar 

  15. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Method Eng 45:601–620. doi:10.1002/(SICI)1097-0207(19990620)

    Google Scholar 

  16. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Method Eng 46:131–150. doi:10.1002/(SICI)1097-0207(19990910)

    Google Scholar 

  17. Belytschko T, Moës N, Usui S, Parimi C (2001) Arbitrary discontinuities in finite elements. Int J Numer Method Eng 50:993–1013. doi:10.1002/1097-0207(20010210)

    Google Scholar 

  18. Ji H, Dolbow JE (2004) On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method. Int J Numer Method Eng 61:2508–2535. doi:10.1002/nme.1167

    Article  MATH  Google Scholar 

  19. Benvenuti E (2008) A regularized XFEM framework for embedded cohensive interfaces. Comp Method Appl Mech Eng 197:4367–4378. doi:10.1016/j.cma.2008.05.012

    Article  MATH  Google Scholar 

  20. Yvonnet J, Le-Quang H, He QC (2008) An XFEM/level set approach to modelling surface/interface effects and to computing the size-dependent effective properties of nanocomposites. Comput Mech 42:119–131. doi:10.1007/s00466-008-0241-y

    Article  MATH  MathSciNet  Google Scholar 

  21. Nistor I, Guiton MLE, Massin P, Moës N, Gé niaut S (2009) An X-FEM approach for large sliding contact along discontinuities. Int J Numer Method Eng 78:1407–1435. doi:10.1002/nme.2532

    Article  MATH  Google Scholar 

  22. Cheng KW, Fries TP (2010) Higher-order XFEM for curved strong and weak discontinuities. Int J Numer Method Eng 82:564–590. doi:10.1002/nme.2768

    MATH  MathSciNet  Google Scholar 

  23. Farsad M, Vernerey FJ, Park HS (2010) An extended finite element/level set method to study surface effects on the mechanical behavior and properties of nanomaterials. Int J Numer Method Eng 84:1466–1489. doi:10.1002/nme.2946

    Article  MATH  MathSciNet  Google Scholar 

  24. Fries TP, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Method Eng 84:253–304. doi:10.1002/nme.2914

    MATH  MathSciNet  Google Scholar 

  25. Zhu QZ, Gu ST, Yvonnet J, Shao JF, He QC (2011) Three-dimensional numerical modelling by XFEM of spring-layer imperfect curved interfaces with applications to linearly elastic composite materials. Int J Numer Method Eng 88:307–328. doi:10.1002/nme.3175

    Article  MATH  MathSciNet  Google Scholar 

  26. Sussmann C, Givoli D, Benveniste Y (2011) Combined asymptotic finite-element modelling of thin layers for scalar elliptic problems. Comput Method Appl Mech Eng 200:3255–3269. doi:10.1016/j.cma.2011.08.001

    Article  MATH  MathSciNet  Google Scholar 

  27. Sanchez-Palencia E (1970) Comportement limite d’un probl ème de transmission à travers une plaque faiblement conductrice. C R Acad Sci Ser A 270:1026–1028

    MATH  MathSciNet  Google Scholar 

  28. Pham HP, Sanchez-Palencia E (1974) Phénomènes de transmission a travers des couches minces de conductivité élevé e. J Math Anal Appl 47:284–309

    Article  MATH  MathSciNet  Google Scholar 

  29. Hashin Z (2001) Thin interphase/imperfect interface in conduction. J Appl Phys 89:2261–2267. doi:10.1063/1.1337936

    Article  Google Scholar 

  30. Benveniste Y (2006) A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media. J Mech Phys Solids 54:708–734. doi:10.1016/j.jmps.2005.10.009

    Article  MATH  MathSciNet  Google Scholar 

  31. Gu ST, He QC (2011) Interfacial discontinuity relations for coupled multifield phenomena and their application to the modeling of thin interphases as imperfect interfaces. J Mech Phys Solids 59:1413–1426. doi:10.1016/j.jmps.2011.04.004

    Article  MATH  MathSciNet  Google Scholar 

  32. Gu ST, Yang D, He QC (2013) Modelling of thermal imperfect interfaces: beyond Kapitza resistance and highly conducting models. (submitted)

  33. Dolbow J, Harari I (2009) An efficient finite element method for embedded interface problems. Int J Numer Method Eng 78:229–252. doi:10.1002/nme.2486

    Article  MATH  MathSciNet  Google Scholar 

  34. Harari I, Dolbow J (2010) Analysis of an efficient finite element method for embedded interface problems. Comput Mech 46:205–211. doi:10.1007/s00466-009-0457-5

    Article  MATH  MathSciNet  Google Scholar 

  35. Gu ST, Monteiro E, He QC (2011) Coordinate-free derivation and weak formulation of a general imperfect interface model for thermal conduction in composites. Compos Sci Technol 71:1209–1216. doi:10.1016/j.compscitech.2011.04.001

    Google Scholar 

  36. Gurtin ME, Murdoch AI (1975) A continuum theory of elastic material surfaces. Arch Ration Mech Anal 57:291–323. doi:10.1007/BF00261375

    MATH  MathSciNet  Google Scholar 

  37. Belytchko T, Parimi C, Moës N, Sukumar N, Usui S (2003) Structured extended finite element method for solids defined by implicit surfaces. Int J Numer Method Eng 56:609–635. doi:10.1002/nme.686

    Google Scholar 

  38. Chessa J, Wang HW, Belytschko T (2003) On the construction of blending elements for local partition of unity enriched finite elements. Int J Numer Method Eng 57:1015–1038. doi:10.1002/nme.777

    Article  MATH  Google Scholar 

  39. Fries TP (2008) A corrected XFEM approximation without problems in blending elements. Int J Numer Method Eng 75:503–532. doi:10.1002/nme.2259

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the National Natural Science Foundation of China (Grant Number 11202173), the Fundamental Research Funds for the Central Universities (Grant Number SWJTU11CX027) and the Postdoctoral Science Foundation of China (Grant Number 2013M530406).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. T. Gu or Q. C. He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J.T., Gu, S.T., Monteiro, E. et al. A versatile interface model for thermal conduction phenomena and its numerical implementation by XFEM. Comput Mech 53, 825–843 (2014). https://doi.org/10.1007/s00466-013-0933-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-013-0933-9

Keywords

Navigation