Skip to main content
Log in

A wideband FMBEM for 2D acoustic design sensitivity analysis based on direct differentiation method

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper presents a wideband fast multipole boundary element method (FMBEM) for two dimensional acoustic design sensitivity analysis based on the direct differentiation method. The wideband fast multipole method (FMM) formed by combining the original FMM and the diagonal form FMM is used to accelerate the matrix-vector products in the boundary element analysis. The Burton–Miller formulation is used to overcome the fictitious frequency problem when using a single Helmholtz boundary integral equation for exterior boundary-value problems. The strongly singular and hypersingular integrals in the sensitivity equations can be evaluated explicitly and directly by using the piecewise constant discretization. The iterative solver GMRES is applied to accelerate the solution of the linear system of equations. A set of optimal parameters for the wideband FMBEM design sensitivity analysis are obtained by observing the performances of the wideband FMM algorithm in terms of computing time and memory usage. Numerical examples are presented to demonstrate the efficiency and validity of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Gates AA, Accorsi ML (1993) Automatic shape optimization of three-dimensional shell structures with large shape changes. Comput Struct 49:167–178

    Article  MATH  Google Scholar 

  2. Scarpa F (2000) Parametric sensitivity analysis of coupled acoustic-structural systems. J Vib Acoust 122:109–115

    Article  Google Scholar 

  3. Sommerfeld A (1949) Partial differential equations in physics. Academic Press Inc, New York

    MATH  Google Scholar 

  4. Engleder S, Steinbach O (2008) Stabilized boundary element methods for exterior Helmholtz problems. Numerische Mathematik 110:145–160

    Article  MathSciNet  MATH  Google Scholar 

  5. Demkowicz L, Karafiat A, Oden JT (1991) Solution of elastic scattering problems in linear acoustic using hp boundary element method. Comput Methods Appl Mech Eng 101:251–282

    Article  MathSciNet  Google Scholar 

  6. Smith DC, Bernhard RJ (1992) Computation of acoustic shape design sensitivity using a boundary element method. J Vib Acoust 114:127–132

    Article  Google Scholar 

  7. Matsumoto T, Tanaka M, Miyagawa M, Ishii N (1993) Optimum design of cooling lines in injection moulds by using boundary element design sensitivity analysis. Finite Elem Anal Des 14:177–185

    Article  Google Scholar 

  8. Matsumoto T, Tanaka M, Yamada Y (1995) Design sensitivity analysis of steady-state acoustic problems using boundary integral equation formulation. JSME Int J C 38:9–16

    Google Scholar 

  9. Koo BU, Ih JG, Lee BC (1998) Acoustic shape sensitivity analysis using the boundary integral equation. J Acoust Soc Am 104:2851–2860

    Article  Google Scholar 

  10. Kane JH, Mao S, Everstine GC (1991) A boundary element formulation for acoustic sensitivity analysis. J Acoust Soc Am 90:561–573

    Article  Google Scholar 

  11. Martinsson PG, Rokhlin V (2004) A fast direct solver for boundary integral equations in two dimensions. J Comput Phys 205:1–23

    Article  MathSciNet  Google Scholar 

  12. Martinsson PG, Rokhlin V (2007) A fast direct solver for scattering problems involving elongated structures. J Comput Phys 221:288–302

    Article  MathSciNet  MATH  Google Scholar 

  13. Martinsson PG (2009) A fast direct solver for a class of elliptic partial differential equations. J Sci Comput 38(3):316–330

    Article  MathSciNet  MATH  Google Scholar 

  14. Bebendorf M, Rjasanow S (2003) Adaptive low-rank approximation of collocation matrices. Computing 70:1–24

    Article  MathSciNet  MATH  Google Scholar 

  15. Rjasanow S, Steinbach O (2007) The fast solution of boundary integral equations. Springer, Boston

    MATH  Google Scholar 

  16. Rokhlin V (1990) Rapid solution of integral equations of scattering theory in two dimensions. J Comput Phys 86:414–439

    Article  MathSciNet  MATH  Google Scholar 

  17. Greengard L, Rokhlin V (1987) A fast algorithm for particle simulations. J Comput Phys 73:325–348

    Article  MathSciNet  MATH  Google Scholar 

  18. Coifman R, Rokhlin V, Wandzura S (1993) The fast multipole method for the wave equation: a pedestrian prescriptions. Antennas Propag Mag IEEE 35(3):7–12

    Article  Google Scholar 

  19. Liu YJ, Nishimura N, Yao ZH (2005) A fast multipole accelerated method of fundamental solutions for potential problems. Eng Anal Boundary Elem 29:1016–1024

    Article  MATH  Google Scholar 

  20. Rokhlin V (1985) Rapid solution of integral equations of calssical potential theory. J Comput Phys 60:187–207

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu YJ, Nishimura N (2006) The fast multipole boundary element method for potential problems. Eng Anal Boundary Elem 30:371–381

    Article  MATH  Google Scholar 

  22. Shen L, Liu YJ (2007) An adaptive fast multipole boundary element method for three-dimensional acoustic wave problems based on the Burton–Miller formulations. Comput Mech 40:461–472

    Article  MATH  Google Scholar 

  23. Li SD, Huang QB (2011) A new fast multipole boundary element method for two dimensional acoustic problems. Comput Methods Appl Mech Eng 200:1333–1340

    Article  MATH  Google Scholar 

  24. Yoshida K, Nishimura N, Kobayashi S (2001) Application of new fast multipole boundary integral equation method to crack problems in 3D. Eng Anal Boundary Elem 25:239–247

    Article  MATH  Google Scholar 

  25. Nishimura N (2002) Fast multipole accelerated boundary integral equation methods. Appl Mech Rev 55:299–324

    Article  Google Scholar 

  26. Lu CC, Chew WC (1993) Fast algorithm for solving hybrid integral equations. IEE Proc H 140:455–460

    Article  Google Scholar 

  27. Cho MH, Cai W (2010) A wideband fast multipole method for the two-dimensinoal complex Helmholtz equation. Comput Phys Commun 181:2086–2090

    Article  MathSciNet  MATH  Google Scholar 

  28. Schenck HA (1968) Improved integral formulation for acoustic radiation problems. J Acoust Soc Am 44:41–58

    Article  Google Scholar 

  29. Burton AJ, Miller GF (1971) The application of integral equation methods to the numerical solution of some exterior boundary-value problem. Proc R Soc Lond A 323:201–210

    Article  MathSciNet  MATH  Google Scholar 

  30. Zheng CJ, Matsumoto T, Takahashi T, Chen HB (2012) A wideband fast multipole boundary element method for three dimensional acoustic shape sensitivity analysis based on direct differentiation method. Eng Anal Boundary Elem 36:361–371

    Google Scholar 

  31. Saad Y, Schultz MH (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7:856–869

    Google Scholar 

  32. Amini S (1990) On the choice of coupling parameter in boundary integral formulations of the acoustic problem. Appl Anal 35:75–92

    Article  MathSciNet  MATH  Google Scholar 

  33. Zheng CJ, Matsumoto T, Takahashi T, Chen HB (2010) Boundary element shape design sensitivity formulation of 3D acoustic problems based on direct differentiation of strongly-singular and hypersingular boundary integral equations. Trans JSME C 76:2899–2908

    Google Scholar 

  34. Zheng CJ, Matsumoto T, Takahashi T, Chen HB (2011) Explicit evalution of hypersingular boundary integral equations for acoustic sensitivity analysis by using constant element discretization. Eng Anal Boundary Elem 35:1225–1235

    Article  MathSciNet  MATH  Google Scholar 

  35. Demkowicz L (1994) Asymptotic convergence in finite and boundary element methods. Part 2: The LBB constant for rigid and elastic problems. Comput Math Appl 28(6):93–109

    Article  MathSciNet  MATH  Google Scholar 

  36. Haug EJ, Choi KK, Komkov V (1986) Design sensitivity analysis of structural systems. Academic Press Inc, New York

    MATH  Google Scholar 

  37. Wolf WR, Lele SK (2011) Wideband fast multipole boundary element method: application to acoustic scattering from aerodynamic bodies. Int J Numer Method Fluids 67:2108–2129

    Article  MathSciNet  MATH  Google Scholar 

  38. Amini S, Prot A (2000) Analysis of the truncation errors in the fast multipole method for scattering problems. J Comput Appl Math 115:23–33

    Article  MathSciNet  MATH  Google Scholar 

  39. Hothersall DC, Chandler-Wilde SN, Hajmirzae NM (1991) The efficiency of single noise barriers. J Sound Vib 146:303–322

    Article  Google Scholar 

Download references

Acknowledgments

Financial supports from the National Natural Science Foundation of China (NSFC) under Grant No. 11172291 and China Postdoctoral Science Foundation under Grant No. 2012M510162 are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibo Chen.

Appendices

Appendix A: evaluation of the integrals on \(S_{\epsilon }\) and \(\Gamma _{\epsilon }\)

\(S_{\epsilon }\) and \(\Gamma _{\epsilon }\) are depicted in Fig. 1. The radius and shape of the semi-circle \(S_{\epsilon }\) do not vary with respect to the design variable. First one can obtain easily the following formulations on \(S_{\epsilon }\):

$$\begin{aligned} n_j(x)n_j(y)=\cos \theta , \end{aligned}$$
(99)

and

$$\begin{aligned} y_j-x_j=\epsilon n_j(y). \end{aligned}$$
(100)

By differentiating the above two equations with respect to the design variable, one can derive the following formulations:

$$\begin{aligned} \dot{\overline{n_j(x)n_j(y)}}=0, \end{aligned}$$
(101)

and

$$\begin{aligned} \dot{\overline{y_j-x_j}}=\epsilon \dot{\overline{n_j(y)}}. \end{aligned}$$
(102)

Moreover,

$$\begin{aligned} d\dot{S}(y)=0. \end{aligned}$$
(103)

By substituting the above equations into the singular integrals on boundary \(S_{\epsilon }\) in Eqs. (33) and (34), one can obtain the following formulations:

$$\begin{aligned} \int _{S_\epsilon }F(x,y)\dot{\phi }(y)dS(y)&= -\frac{1}{2}\dot{\phi }(x), \end{aligned}$$
(104)
$$\begin{aligned} \int _{S_\epsilon }F^1(x,y)\dot{\phi }(y)dS(y)&= -\frac{1}{\pi \epsilon }\dot{\phi }(x)-\frac{1}{4}\dot{q}(x), \end{aligned}$$
(105)

and

$$\begin{aligned} \int _{S_\epsilon }G^1(x,y)\dot{q}(y)dS(y)=\frac{1}{4}\dot{q}(x). \end{aligned}$$
(106)

The results of the other integrals on boundary \(S_{\epsilon }\) in Eqs. (33) and (34) are all zero.

The element \(\Gamma _{\epsilon }\) will vary with respect to the design variable and the distribution of \(\dot{y}_j\) varies linearly on \(\Gamma _{\epsilon }\), one can obtain the following formulations on \(\Gamma _{\epsilon }\):

$$\begin{aligned} \dot{y}_{l,m}&= \dot{x}_{l,m}, \end{aligned}$$
(107)
$$\begin{aligned} \dot{y}_l-\dot{x}_l&= \dot{x}_{l,j}(y_j-x_j), \end{aligned}$$
(108)

and

$$\begin{aligned} d\dot{S}(y)=[\dot{y}_{l,l}-\dot{y}_{l,j}n_l(y)n_j(y)]dS(y)+r_{,l}r_{,j}\dot{x}_{l,j}\epsilon . \end{aligned}$$
(109)

By substituting the above equations into the singular integrals on boundary \(\Gamma _{\epsilon }\) in Eqs. (33) and (34), one can obtain the following equations:

$$\begin{aligned}&\quad \int _{\Gamma _\epsilon } \dot{G}(x,y)q(y)ds(y) \nonumber \\&\quad =-\frac{ik}{4}\lim _{\varepsilon \rightarrow 0}\int _{\Gamma _\varepsilon } H_1^{(1)}(kr)\dot{r}dS(y) q(x), \end{aligned}$$
(110)
$$\begin{aligned}&\quad \int _{\Gamma _\epsilon } G(x,y)\dot{q}(y)dS(y) \nonumber \\&\quad =\frac{i}{4}\lim _{\varepsilon \rightarrow 0}\int _{\Gamma _\varepsilon } H_0^{(1)}(kr)dS(y)\dot{q}(x), \end{aligned}$$
(111)
$$\begin{aligned}&\quad \int _{\Gamma _\epsilon } G(x,y)q(y)d\dot{S}(y) \nonumber \\&\quad =\frac{i}{4}\lim _{\varepsilon \rightarrow 0}\int _{\Gamma _\varepsilon } H_0^{(1)}(kr)dS(y)q(x)[\dot{x}_{l,l}-\dot{x}_{l,j}n_l(x)n_j(x)],\nonumber \\ \end{aligned}$$
(112)
$$\begin{aligned}&\quad \int _{\Gamma _\epsilon } F^1(x,y)\dot{\phi }(y)dS(y) \nonumber \\&\quad =\frac{ik^2}{4}\lim _{\varepsilon \rightarrow 0}\int _{\Gamma _\varepsilon }\left[\frac{ H_1^{(1)}(kr)}{kr}+\frac{2i}{\pi k^2 r^2}-\frac{i}{\pi }\ln (kr)\right]dS(y)\dot{\phi }(x) \nonumber \\&\quad -\frac{k^2L}{4\pi }\left[\ln (\frac{kL}{2})+\frac{8}{k^2L^2}-1\right]\dot{\phi }(x)+\frac{1}{\pi \epsilon }\dot{\phi }(x), \end{aligned}$$
(113)
$$\begin{aligned}&\quad \int _{\Gamma _\epsilon } \dot{F^1}(x,y)\phi (y)dS(y) \nonumber \\&\quad =\left(\frac{4}{\pi L}-\frac{2}{\pi \epsilon }\right)r_{,l}r_{,j}\dot{x}_{l,j}\phi (x)-\frac{ik^2}{4} r_{,l}r_{,j}\dot{x}_{l,j}\phi (x) \nonumber \\&\quad \cdot \lim _{\varepsilon \rightarrow 0}\int _{\Gamma _\varepsilon }\left[ H_2^{(1)}(kr)+\frac{4i}{\pi k^2 r^2}\right]dS(y), \end{aligned}$$
(114)

and

$$\begin{aligned} \int _{\Gamma _\epsilon }&F^1(x,y)\phi (y)d\dot{S}(y) \nonumber \\&=\frac{2}{\pi \epsilon }r_{,l}r_{,j}\dot{x}_{l,j}\phi (x)+\frac{ik^2}{4}r_{,l}r_{,j}\dot{x}_{l,j}\phi (x) \nonumber \\&\cdot \lim _{\varepsilon \rightarrow 0}\int _{\Gamma _\varepsilon }\left[\frac{ H_1^{(1)}(kr)}{kr}+\frac{2i}{\pi k^2 r^2}-\frac{i}{\pi }\ln (kr)\right]dS(y) \nonumber \\&-\frac{k^2L}{4\pi }\left[\ln \left(\frac{kL}{2}\right)+\frac{8}{k^2L^2}-1\right]r_{,l}r_{,j}\dot{x}_{l,j}\phi (x). \end{aligned}$$
(115)

The results of the other integrals on boundary \(\Gamma _{\epsilon }\) in Eqs. (33) and (34) are all zero.

Appendix B: the direct differentiation wtih respect the design variable

By differentiating Eq. (14) directly with respect to the design variable, one can obtain the following equation:

$$\begin{aligned} \frac{1}{2}\dot{\phi }(x) =&\dot{C}_1q(x)+C_1\dot{q}(x) \nonumber \\&+\int _{S\setminus S_x} [\dot{G}(x,y)q(y)-\dot{F}(x,y)\phi (y)]dS(y) \nonumber \\&+ \int _{S\setminus S_x}[G(x,y)\dot{q}(y)-F(x,y)\dot{\phi }(y)]dS(y) \nonumber \\&+\int _{S\setminus S_x}[G(x,y)q(y)-F(x,y)\phi (y)]d\dot{S}(y), \end{aligned}$$
(116)

where

$$\begin{aligned} \dot{C}_1 =&- \frac{ik}{4}\lim _{\varepsilon \rightarrow 0}\int _{\Gamma _\varepsilon } H_1^{(1)}(kr)\dot{r} dS(y) \nonumber \\&+ C_1[\dot{x}_{l,l}-\dot{x}_{l,j}n_l(x)n_j(x)]. \end{aligned}$$
(117)

Finally, one can obtain the following equation:

$$\begin{aligned} \dot{C}_1q(x)+C_1\dot{q}(x)=A_1. \end{aligned}$$
(118)

By substituting the above equation into Eq. (116), one can obtain the same equation as Eq. (35).

By differentiating Eq. (15) directly with respect to the design variable, one can obtain the following equation:

$$\begin{aligned} \frac{1}{2}\dot{q}(x) =&\dot{C}_2\phi (x)+C_2\dot{\phi }(x) \nonumber \\&+ \int _{S\setminus S_x} [\dot{G^1}(x,y)q(y)-\dot{F^1}(x,y)\phi (y)]dS(y) \nonumber \\&+ \int _{S\setminus S_x}[G^1(x,y)\dot{q}(y)-F^1(x,y)\dot{\phi }(y)]dS(y) \nonumber \\&+ \int _{S\setminus S_x}[G^1(x,y)q(y)-F^1(x,y)\phi (y)]d\dot{S}(y), \end{aligned}$$
(119)

where

$$\begin{aligned} \dot{C}_2 =M_1+M_2, \end{aligned}$$
(120)

and

$$\begin{aligned} M_1 =-\frac{ik^2}{4} \lim _{\varepsilon \rightarrow 0}\int _{\Gamma _\varepsilon } H_2^{(1)}(kr)\dot{r}/rdS(y), \end{aligned}$$
(121)
$$\begin{aligned} M_2=\lim _{\varepsilon \rightarrow 0}\int _{\Gamma _\varepsilon } \frac{ik}{4r} H_1^{(1)}(kr)d\dot{S}(y). \end{aligned}$$
(122)

By eliminating the singular part in function \(H_2^{(1)}(kr), M_1\) can be expressed as

$$\begin{aligned} M_1 =&-\frac{ik^2}{4} \lim _{\varepsilon \rightarrow 0}\int _{\Gamma _\varepsilon }\left[ H_2^{(1)}(kr)+\frac{4i}{\pi k^2 r^2}\right]\dot{r}/rdS(y) \nonumber \\&- \lim _{\varepsilon \rightarrow 0}\int _{\Gamma _\varepsilon } \frac{1}{\pi r^2} \dot{r}/rdS(y). \end{aligned}$$
(123)

From Eqs. (29) and (108), one can derived the following equation on \(\Gamma _\varepsilon \):

$$\begin{aligned} \dot{r}/r=r_{,l}r_{,j}\dot{x}_{l,j}=\dot{y}_{l,l}-\dot{y}_{l,j}n_l(y)n_j(y), \end{aligned}$$
(124)

and \(\dot{r}/r\) does not vary with respect to the design variable for the piecewise constant discretization. By substituting this equation into Eq. (123), one can obtain

$$\begin{aligned} M_1 =&-\frac{ik^2}{4} \lim _{\varepsilon \rightarrow 0}\int _{\Gamma _\varepsilon }\left[ H_2^{(1)}(kr)+\frac{4i}{\pi k^2 r^2}\right]dS(y)r_{,l}r_{,j}\dot{x}_{l,j} \nonumber \\&+ \left(\frac{4}{\pi L}-\frac{2}{\pi \varepsilon }\right)r_{,l}r_{,j}\dot{x}_{l,j}. \end{aligned}$$
(125)

By substituting Eq. (109) into Eq. (122), \(M_2\) can be expressed as

$$\begin{aligned} M_2=\lim _{\varepsilon \rightarrow 0}\int _{\Gamma _\varepsilon } \frac{ik}{4r} H_1^{(1)}(kr)dS(y)r_{,l}r_{,j}\dot{x}_{l,j}+\frac{1}{\pi \varepsilon }r_{,l}r_{,j}\dot{x}_{l,j}. \end{aligned}$$
(126)

By substituting Eq. (17) into the above equation, one can obtain

$$\begin{aligned} M_2=C_2r_{,l}r_{,j}\dot{x}_{l,j}+\frac{2}{\pi \varepsilon }r_{,l}r_{,j}\dot{x}_{l,j}. \end{aligned}$$
(127)

By substituting Eqs. (125) and (127) into Eq. (120), \(\dot{C}_2 \)can be expressed as

$$\begin{aligned} \dot{C}_2=&-\frac{ik^2}{4} \lim _{\varepsilon \rightarrow 0}\int _{\Gamma _\varepsilon }\left[ H_2^{(1)}(kr)+\frac{4i}{\pi k^2 r^2}\right]dS(y)r_{,l}r_{,j}\dot{x}_{l,j} \nonumber \\&+ \left(\frac{4}{\pi L}+C_2\right)r_{,l}r_{,j}\dot{x}_{l,j}. \end{aligned}$$
(128)

Finally, one can obtain the following equation:

$$\begin{aligned} \dot{C}_2\phi (x)+C_2\dot{\phi }(x)=B_1. \end{aligned}$$
(129)

By substituting the above equation into Eq. (119), one can obtain the same equation as Eq. (36).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Zheng, C. & Chen, H. A wideband FMBEM for 2D acoustic design sensitivity analysis based on direct differentiation method. Comput Mech 52, 631–648 (2013). https://doi.org/10.1007/s00466-013-0836-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-013-0836-9

Keywords

Navigation