Skip to main content
Log in

Optimal spatiotemporal reduced order modeling, Part I: proposed framework

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

An optimal spatiotemporal reduced order modeling framework is proposed for nonlinear dynamical systems in continuum mechanics. In this paper, Part I, the governing equations for a general system are modified for an under-resolved simulation in space and time with an arbitrary discretization scheme. Basic filtering concepts are used to demonstrate the manner in which subgrid-scale dynamics arise with a coarse computational grid. Models are then developed to account for the underlying spatiotemporal structure via inclusion of statistical information into the governing equations on a multi-point stencil. These subgrid-scale models are designed to provide closure by accounting for the interactions between spatiotemporal microscales and macroscales as the system evolves. Predictions for the modified system are based upon principles of mean-square error minimization, conditional expectations and stochastic estimation, thus rendering the optimal solution with respect to the chosen resolution. Practical methods are suggested for model construction, appraisal, error measure and implementation. The companion paper, Part II, is devoted to demonstrating the methodology through a computational study of a nonlinear beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Strogatz SH (1994) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Perseus Books, Cambridge

    Google Scholar 

  2. Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  3. Fish J (2006) Bridging the scales in nano engineering and science. J Nanoparticle Res 8:577–594

    Article  Google Scholar 

  4. Weinan E, Engquist B, Li X, Ren W, Vanden-Eijnden E (2007) Heterogeneous multiscale methods: a review. Commun Comput Phys 2(3):367–450

    Google Scholar 

  5. Horstemeyer MF (2009) Multiscale modeling: a review. In: Practical aspects of computational chemistry. Springer, New York, pp 87–135

  6. Bai Z, Dewilde PM, Freund RW (2002) Reduced-order modeling. Numerical Analysis Manuscript No. 02–4-13, Bell Laboratories, Murray Hill

  7. Lucia DJ, Beran PS, Silva WA (2004) Reduced-order modeling: new approaches for computational physics. Prog Aerosp Sci 40:51–117

    Article  Google Scholar 

  8. Kryloff N, Bogoliuboff N (1947) Introduction to nonlinear mechanics. Princeton University Press, Princeton

    Google Scholar 

  9. Dimitriadis G (2008) Continuation of higher-order harmonic balance solutions for nonlinear aeroelastic systems. J Aircr 45(2):523–537

    Article  Google Scholar 

  10. Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Annu Rev Fluid Mech 25:539–575

    Article  MathSciNet  Google Scholar 

  11. Boyd JP (1989) Chebyshev and Fourier spectral methods. Springer, Berlin

    Book  Google Scholar 

  12. Liu WK, Park HS (2005) Bridging scale methods for computational nanotechnology. In: Rieth M, Schommers W (eds) Handbook of theoretical and computational nanotechnology. American Scientific Publishers, Stevenson Ranch

    Google Scholar 

  13. Liu WK, Karpov EG, Park HS (2006) Nano mechanics and materials: theory, multiscale methods and applications. Wiley, London

    Book  Google Scholar 

  14. Belytschko T, Xiao X (2003) Coupling methods for continuum model with molecular model. Int J Multiscale Comput Eng 1:115–126

    Google Scholar 

  15. Wagner GJ, Liu WK (2003) Coupling of atomistic and continuum simulations using a bridging scale decomposition. J Comput Phys 190(1):249–274

    Article  MATH  Google Scholar 

  16. Liu WK, Park HS, Qian D, Karpov EG, Kadowaki H, Wagner GJ (2006) Bridging scale methods for nanomechanics and materials. Comput Methods Appl Mech Eng 195(13):1407–1421

    Article  MathSciNet  MATH  Google Scholar 

  17. Kadowaki H, Liu WK (2004) Bridging multi-scale method for localization problems. Comput Methods Appl Mech Eng 193:3267–3302

    Article  MATH  Google Scholar 

  18. Ren W, Weinan E (2005) Heterogeneous multiscale method for the modeling of complex fluids and microfluidics. J Comput Phys 204(1):1–26

    Article  MathSciNet  MATH  Google Scholar 

  19. Perthame B (1992) Second order Boltzmann-type schemes for compressible Euler equations in one and two space dimensions. SIAM J Numer Anal 29:1–19

    Article  MathSciNet  MATH  Google Scholar 

  20. Xu K, Pendergast KH (1994) Numerical Navier–Stokes solutions from gas kinetic theory. J Comput Phys 114:9–17

    Article  MathSciNet  MATH  Google Scholar 

  21. Moin P, Mahesh K (1998) Direct numerical simulation: a tool for turbulence research. Annu Rev Fluid Mech 30:539–578

    Article  MathSciNet  Google Scholar 

  22. Lesieur M, Metais O (1996) New trends in large-eddy simulations of turbulence. Annu Rev Fluid Mech 28:45–82

    Article  MathSciNet  Google Scholar 

  23. Ghoshal S (1996) An analysis of numerical errors in large-eddy simulations of turbulence. J Comput Phys 125:187–206

    Article  MathSciNet  Google Scholar 

  24. Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl Akad Nauk SSSR 30:299–303

    Google Scholar 

  25. Hughes TJR, Feijoo GR, Mazzei L, Quincy JB (1998) The variational multiscale method: a paradigm for computational mechanics. Comput Methods Appl Mech Eng 166:3–24

    Article  MathSciNet  MATH  Google Scholar 

  26. Hughes TJR (1995) Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput Methods Appl Mech Eng 127:387–401

    Article  MATH  Google Scholar 

  27. Hughes TJR, Steward JR (1996) A space-time formulation for multiscale phenomena. J Comput Appl Math 74:217–229

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu WK, Chen Y, Uras RA, Chang CT (1996) Generalized multiple scale reproducing kernel methods. Comput Methods Appl Mech Eng 139(1):91–157

    Article  MathSciNet  MATH  Google Scholar 

  29. Fish J, Filonova V, Yuan Z (2012) Reduced order computational continua. Comput Methods Appl Mech Eng 221–222:104–116. doi:10.1016/j.cma.2012.02.01041

  30. Abdulle A, Weinan E (2003) Finite difference heterogeneous multi-scale method for homogenization problems. J Comput Phys 191:18–39

    Article  MathSciNet  MATH  Google Scholar 

  31. Engquist B, Tsai YH (2005) Heterogeneous multiscale methods for stiff ordinary differential equations. Math Comput 74: 1707–1742

    Article  MathSciNet  MATH  Google Scholar 

  32. Sharp R, Tsai YH, Engquist B (2005) Multiple time scale methods for the inverted pendulum problem. In: Proceedings of convergence on multiscale methods in science and engineering, Lecture Notes in Computational Science and Engineering, vol 44. Springer, Berlin, pp 233–244

  33. Weinan E, Liu D, Vanden-Eijnden E (2005) Analysis of multiscale methods for stochastic differential equations. Commun Pure Appl Math 58(11):1544–1585

    Article  MATH  Google Scholar 

  34. Vanden-Eijnden E (2003) Numerical techniques for multiscale dynamical systems with stochastic effects. Commun Math Sci 1(2):385–391

    MathSciNet  MATH  Google Scholar 

  35. Smolinski P, Belytschko T, Neal M (1988) Multi-time-step integration using nodal partitioning. Int J Numer Methods Eng 26(2):349–359

    Article  MathSciNet  MATH  Google Scholar 

  36. Gravouil A, Combescure A (2003) Multi-time-step and two-scale domain decomposition method for non-linear structural dynamics. Int J Numer Methods Eng 58:1545–1569

    Article  MATH  Google Scholar 

  37. Yu Q, Fish J (2002) Multiscale asymptotic homogenization for multiphysics problems with multiple spatial and temporal scales: a coupled thermo-viscoelastic example problem. Int J Solids Struct 39:6429–6452

    Article  MathSciNet  MATH  Google Scholar 

  38. Bottasso CL (2002) Multiscale temporal integration. Comput Methods Appl Mech Eng 191:2815–2830

    Article  MathSciNet  MATH  Google Scholar 

  39. Slemrod M, Acharya A (2012) Time-averaged coarse variables for multi-scale dynamics. Quart Appl Math 70:793–803. doi:10.1090/S0033-569X-2012-01291-5

  40. Ammar A, Chinesta F, Cueto E, Doblaré M (2012) Proper generalized decomposition of time-multiscale models. Int J Numer Methods Eng 90(5):569–596. doi:10.1002/nme.3331

    Article  MATH  Google Scholar 

  41. Givon D, Kupferman R, Stuart A (2004) Extracting macroscopic dynamics: model problems and algorithms. Nonlinearity 17:55–127

    Article  MathSciNet  Google Scholar 

  42. Mori H (1965) Transport, collective motion and Brownian motion. Progr Theor Phys 33:423–450

    Google Scholar 

  43. Zwanzig R (1973) Nonlinear generalized Langevin equations. J Stat Phys 9:215–220

    Google Scholar 

  44. Nordholm S, Zwanzig R (1975) A systematic derivation of exact generalized Brownian motion theory. J Stat Phys 13(4):347–371

    Article  MathSciNet  Google Scholar 

  45. Chorin AJ, Kast AP, Kupferman R (1998) Optimal prediction of underresolved dynamics. Proc Natl Acad Sci USA 95(8):4094–4098

    Article  MathSciNet  MATH  Google Scholar 

  46. Chorin AJ, Hald OH, Kupferman R (2000) Optimal prediction and the Mori–Zwanzig representation of irreversible processes. Proc Natl Acad Sci USA 97(7):2968–2973

    Article  MathSciNet  MATH  Google Scholar 

  47. Chorin AJ, Kupferman R, Levy D (2000) Optimal prediction for Hamiltonian partial differential equations. J Comput Phys 162:267–297

    Article  MathSciNet  MATH  Google Scholar 

  48. Chorin AJ, Hald OH, Kupferman R (2002) Optimal prediction with memory. Phys D 166:239–257

    Article  MathSciNet  MATH  Google Scholar 

  49. Grabert H (1982) Projection operator techniques in nonequilibrium statistical mechanics. Springer, Berlin

    Google Scholar 

  50. Fick E, Sauerman G (1990) The quantum statistics of dynamical processes. Springer, Berlin

    Book  Google Scholar 

  51. Adrian R, Jones B, Chung M, Hassan Y, Nithianandan C, Tung A (1989) Approximation of turbulent conditional averages by stochastic estimation. Phys Fluids 1:992–998

    Article  Google Scholar 

  52. Adrian R (1990) Stochastic estimation of subgrid-scale motions. Appl Mech Rev 43:214–218

    Article  Google Scholar 

  53. Langford J, Moser RD (1999) Optimal LES formulations for isotropic turbulence. J Fluid Mech 398:321–346

    Article  MathSciNet  MATH  Google Scholar 

  54. Zandonade PS, Langford JA, Moser RD (2004) Finite volume optimal large-eddy simulation of isotropic turbulence. Phys Fluids 16:2255–2271

    Article  Google Scholar 

  55. Vedula P, Moser RD, Zandonade PS (2005) Validity of quasinormal approximation in turbulent channel flow. Phys Fluids 17(055106):1–9

    Google Scholar 

  56. Vedula P, Moser RD, Adrian RJ (2005) Optimal large-eddy simulation based on coarse sampling (unpublished report)

  57. Moser RD, Malaya N, Chang H, Zandonade PS, Vedula P, Bhattacharya A, Hasselbacher A (2009) Theoretically based optimal large-eddy simulation. Phys Fluids 21:105104

    Article  Google Scholar 

  58. He G, Rubinstein R, Wang LP (2002) Effects of subgrid-scale modeling on the correlations in large eddy simulation. Phys Fluids 14:2186–2193

    Article  Google Scholar 

  59. He G, Wang M, Lele SK (2004) On the computation of space-time correlations by large eddy simulation. Phys Fluids 16:3859–3867

    Article  Google Scholar 

  60. LaBryer A, Attar PJ, Vedula P (2013) A framework for optimal temporal reduced order modeling for nonlinear dynamical systems. J Sound Vibrat 332(4):993–1010. doi:10.1016/j.jsv.2012.10.00863

  61. LaBryer A, Attar PJ, Vedula P (2012) An optimal prediction method for under-resolved time-marching and time-spectral schemes. Int J Multiscale Comput Eng. doi:10.1615/IntJMultCompEng.2012004317

  62. Kadanoff LP (1990) Scaling and universality in statistical physics. Phys A 163:1–14

    Article  MathSciNet  Google Scholar 

  63. Hughes TJR, Mazzei L, Jansen KE (2000) Large eddy simulation and the variational multiscale method. Comput Vis Sci 3:47–59

    Article  MATH  Google Scholar 

  64. Düring G, Josserand C, Rica S (2006) Weak turbulence for a vibrating plate: can one hear a Kolmogorov spectrum? Phys Rev Lett 97(2):025503

    Article  Google Scholar 

  65. LaBryer A, Attar PJ, Vedula P (2012) Optimal spatiotemporal reduced order modeling, Part II: application to a nonlinear beam. Comput Mech. doi:10.1007/s00466-012-0821-8

  66. LaBryer A, Attar PJ, Vedula P. Subgrid-scale dynamics for a nonlinear beam. AIAA Paper 2012–1711

  67. Papoulis A, Unnikrishna Pillai S (2002) Probability, random variables and stochastic processes. McGraw-Hill, New York

    Google Scholar 

Download references

Acknowledgments

This material is based on research sponsored by OAI and the Air Force Research Laboratory under agreement number FA 8650-11-2-3112. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation therein. The authors would also like to acknowledge the support provided though subcontract with Advanced Dynamics, Inc. (flow-through from NASA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allen LaBryer.

Appendices

Appendix 1: conditional average

From a statistical perspective [67], the purpose of the subgrid-scale model \(\varvec{\mathcal{M }}\) is to estimate one random variable \(\varvec{\tau }\) in terms of another random variable \(\tilde{\mathbf{u}}\). We seek a function of \(\tilde{\mathbf{u}}\), written as \(\varvec{\mathcal{M }}\left(\tilde{\mathbf{u}}\right)\), to approximate \(\varvec{\tau }\) such that the mean-square error is minimal; hence,

$$\begin{aligned} \mathbf{e}&= \left<\left[\varvec{\tau }-\varvec{\mathcal{M }}\left(\tilde{\mathbf{u}}\right)\right]^2\right> \\&= \int \limits ^{\infty }_{-\infty }\int \limits ^{\infty }_{-\infty }\left[\varvec{\tau }-\varvec{\mathcal{M }}\left(\tilde{\mathbf{u}}\right)\right]^2 \varvec{f}\left(\varvec{\tau },\tilde{\mathbf{u}}\right)d\varvec{\tau }d\tilde{\mathbf{u}},\nonumber \end{aligned}$$
(27)

where \(\varvec{f}\left(\varvec{\tau },\tilde{\mathbf{u}}\right)\) is the joint PDF of \(\tilde{\mathbf{u}}\) and \(\varvec{\tau }\). Knowledge of \(\varvec{f}\) is not required, but can be found given \(\mathbf{u}\) and \(\tilde{\mathbf{u}}\). From the definition of a conditional PDF, \(\varvec{f}\left(\varvec{\tau },\tilde{\mathbf{u}}\right)=\varvec{f}\left(\varvec{\tau }|\tilde{\mathbf{u}}\right)\varvec{f}\left(\tilde{\mathbf{u}}\right)\), and (27) becomes

$$\begin{aligned} \mathbf{e}=\int \limits ^{\infty }_{-\infty }\varvec{f}\left(\tilde{\mathbf{u}}\right)\int \limits ^{\infty }_{-\infty }\left[\varvec{\tau }-\varvec{\mathcal{M }}\left(\tilde{\mathbf{u}}\right)\right]^2 \varvec{f}\left(\varvec{\tau }|\tilde{\mathbf{u}}\right)d\varvec{\tau }d\tilde{\mathbf{u}}. \end{aligned}$$
(28)

Since \(\varvec{f}\) must be positive everywhere, both integrands are positive. The mean-square error is minimized with respect to \(\tilde{\mathbf{u}}\) if

$$\begin{aligned} \frac{\partial \mathbf{e}}{\partial \varvec{\mathcal{M }}}=0 =\int \limits ^{\infty }_{-\infty }\varvec{f}\left(\tilde{\mathbf{u}}\right)\int \limits ^{\infty }_{-\infty }2\left[\varvec{\tau }-\varvec{\mathcal{M }}\left(\tilde{\mathbf{u}}\right)\right] \varvec{f}\left(\varvec{\tau }|\tilde{\mathbf{u}}\right)d\varvec{\tau }d\tilde{\mathbf{u}}, \nonumber \\ \end{aligned}$$
(29)

which holds if the inner integral evaluates to zero. That is, if

$$\begin{aligned} \varvec{\mathcal{M }}\left(\tilde{\mathbf{u}}\right)=\int \limits ^{\infty }_{-\infty }\varvec{\tau }\varvec{f}\left(\varvec{\tau }|\tilde{\mathbf{u}}\right)d\varvec{\tau }=\left<\varvec{\tau }|\tilde{\mathbf{u}}\right>. \end{aligned}$$
(30)

Hence, out of all possible representations for \(\varvec{\mathcal{M }}\left(\tilde{\mathbf{u}}\right)\), the mean-square error is minimized when the model is equal to the mean of \(\varvec{\tau }\) conditional on \(\tilde{\mathbf{u}}\).

Appendix 2: stochastic estimate

A stochastic estimate [51] for the model \(\varvec{\mathcal{M }}\) can be found by expanding the conditional average in the form of a multivariate power series about the event \(\tilde{\mathbf{u}}=0\). Since the expansion must be truncated at some level, terms up to quadratic are retained in (15). The unknown coefficients \(\varvec{\mathcal{A }}\), \(\varvec{\mathcal{B }}\) and \(\varvec{\mathcal{C }}\) are determined by minimizing the mean-square error between the power series and the conditional average:

$$\begin{aligned} \left(e_i\right)_j^n&= \left<\left[ \left(\mathcal{M }_i\right)_j^n - \left(\mathcal{A }_i\right)_j^n -\sum _\alpha ^{M_S}\sum _\xi ^{M_N}\sum _\mu ^{M_T} \left(\mathcal{B }_{i\alpha }\right)_{j\xi }^{n\mu } \left(\tilde{u}_\alpha \right)_\xi ^\mu \right.\right.\nonumber \\&- \left.\left. \sum _{\alpha ,\beta }^{M_S}\sum _{\xi ,\eta }^{M_N}\sum _{\mu ,\nu }^{M_T} \left(\mathcal{C }_{i\alpha \beta }\right)_{j\xi \eta }^{n\mu \nu } \left(\tilde{u}_\alpha \right)_\xi ^\mu \left(\tilde{u}_\beta \right)_\eta ^\nu \right]^2\right>. \end{aligned}$$
(31)

The orthogonality principle [67] states that each term in the mean-square error (31) must be statistically uncorrelated with the known data in the domain of interest. For the quadratic estimation, the following inner products must be orthogonal:

$$\begin{aligned}&\left<\left[ \left(\mathcal{M }_i\right)_j^n- \left(\mathcal{A }_i\right)_j^n- \sum _\alpha ^{M_S}\sum _\xi ^{M_N}\sum _\mu ^{M_T} \left(\mathcal{B }_{i\alpha }\right)_{j\xi }^{n\mu } \left(\tilde{u}_\alpha \right)_\xi ^\mu \right.\right.\\&\quad - \left.\left. \sum _{\alpha ,\beta }^{M_S}\sum _{\xi ,\eta }^{M_N}\sum _{\mu ,\nu }^{M_T} \left(\mathcal{C }_{i\alpha \beta }\right)_{j\xi \eta }^{n\mu \nu } \left(\tilde{u}_\alpha \right)_\xi ^\mu \left(\tilde{u}_\beta \right)_\eta ^\nu \right], 1 \right> =0\nonumber \\&\left<\left[ \left(\mathcal{M }_i\right)_j^n- \left(\mathcal{A }_i\right)_j^n- \sum _\alpha ^{M_S}\sum _\xi ^{M_N}\sum _\mu ^{M_T} \left(\mathcal{B }_{i\alpha }\right)_{j\xi }^{n\mu } \left(\tilde{u}_\alpha \right)_\xi ^\mu \right.\right.\nonumber \\&\quad - \left.\left. \sum _{\alpha ,\beta }^{M_S}\sum _{\xi ,\eta }^{M_N}\sum _{\mu ,\nu }^{M_T} \left(\mathcal{C }_{i\alpha \beta }\right)_{j\xi \eta }^{n\mu \nu } \left(\tilde{u}_\alpha \right)_\xi ^\mu \left(\tilde{u}_\beta \right)_\eta ^\nu \right], \left(\tilde{u}_\gamma \right)_\phi ^\lambda \right> =0\nonumber \\&\left<\left[ \left(\mathcal{M }_i\right)_j^n- \left(\mathcal{A }_i\right)_j^n- \sum _\alpha ^{M_S}\sum _\xi ^{M_N}\sum _\mu ^{M_T} \left(\mathcal{B }_{i\alpha }\right)_{j\xi }^{n\mu } \left(\tilde{u}_\alpha \right)_\xi ^\mu \right.\right.\nonumber \\&\quad - \left.\left. \sum _{\alpha ,\beta }^{M_S}\sum _{\xi ,\eta }^{M_N}\sum _{\mu ,\nu }^{M_T} \left(\mathcal{C }_{i\alpha \beta }\right)_{j\xi \eta }^{n\mu \nu } \left(\tilde{u}_\alpha \right)_\xi ^\mu \left(\tilde{u}_\beta \right)_\eta ^\nu \right], \left(\tilde{u}_\gamma \right)_\phi ^\lambda \left(\tilde{u}_\delta \right)_\psi ^\rho \right> =0 \nonumber \end{aligned}$$
(32)

The system in (32) can be simplified to the form in (16) first by letting \(\varvec{\mathcal{M }}=\left<\varvec{\tau }|\tilde{\mathbf{u}}\right>\), then by expanding the inner products, commuting the mean operator, assuming constant coefficients and rearranging terms. The stochastic estimation coefficients can be found with knowledge of the moments amongst \(\varvec{\tau }\) and \(\tilde{\mathbf{u}}\), assuming they form a linearly independent system in (16).

Rights and permissions

Reprints and permissions

About this article

Cite this article

LaBryer, A., Attar, P.J. & Vedula, P. Optimal spatiotemporal reduced order modeling, Part I: proposed framework. Comput Mech 52, 417–431 (2013). https://doi.org/10.1007/s00466-012-0820-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-012-0820-9

Keywords

Navigation