Skip to main content
Log in

Extended stochastic FEM for diffusion problems with uncertain material interfaces

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper is concerned with the prediction of heat transfer in composite materials with uncertain inclusion geometry. To numerically solve the governing equation, which is defined on a random domain, an approach based on the combination of the Extended finite element method (X-FEM) and the spectral stochastic finite element method is studied. Two challenges of the extended stochastic finite element method (X-SFEM) are choosing an enrichment function and numerical integration over the probability domain. An enrichment function, which is based on knowledge of the interface location, captures the C 0-continuous solution in the spatial and probability domains without a conforming mesh. Standard enrichment functions and enrichment functions tailored to X-SFEM are analyzed and compared, and the basic elements of a successful enrichment function are identified. We introduce a partition approach for accurate integration over the probability domain. The X-FEM solution is studied as a function of the parameters describing the inclusion geometry and the different enrichment functions. The efficiency and accuracy of a spectral polynomial chaos expansion and a finite element approximation in the probability domain are compared. Numerical examples of a two-dimensional heat conduction problem with a random inclusion show the spectral PC approximation with a suitable choice of enrichment function is as accurate and more efficient than the finite element approach. Though focused on heat transfer in composite materials, the techniques and observations in this paper are also applicable to other types of problems with uncertain geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asokan B, Zabaras N (2006) A stochastic variational multiscale method for diffusion in heterogeneous random media. J Comput Phys 218: 654–676

    Article  MathSciNet  MATH  Google Scholar 

  2. Babuška I, Nobile F, Tempone R (2007) A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J Numer Anal 43: 1005–1034

    Article  Google Scholar 

  3. Belytschko T, Moës N, Usui S, Parimi C (2001) Arbitrary discontinuities in finite elements. Int J Numer Meth Eng 50: 993–1013

    Article  MATH  Google Scholar 

  4. Belytschko T, Parimi C, Moës N, Sukumar N, Usui S (2003) Structured extended finite element methods for solids defined by implicit surfaces. Int J Numer Meth Eng 56: 609–635

    Article  MATH  Google Scholar 

  5. Canuto C, Kozubek T (2007) A fictitious domain approach to the numerical solution of pdes in stochastic domains. Numer Math 107: 257–293

    Article  MathSciNet  MATH  Google Scholar 

  6. Deb M, Babuška I, Oden T (2001) Solution of stochastic partial differential equations using galerkin finite element techniques. Comput Methods Appl Mech Eng 190: 6359–6372

    Article  MATH  Google Scholar 

  7. Desceliers C, Ghanem R, Soize C (2006) Maximum likelihood estimation of stochastic chaos representations from experimental data. Int J Numer Meth Eng 66: 978–1001

    Article  MathSciNet  MATH  Google Scholar 

  8. Fries T (2008) A corrected x-fem approximation without problems in blending elements. Int J Numer Meth Eng 75: 503–532

    Article  MathSciNet  MATH  Google Scholar 

  9. Ghanem R (1999) Ingredients for a general purpose stochastic finite elements implementation. Comput Methods Appl Mech Eng 168: 19–34

    Article  MathSciNet  MATH  Google Scholar 

  10. Ghanem R, Doostan A (2006) On the construction and analysis of stochastic models: Characterization and propagation of the errors associated with limited data. J Comput Phys 217: 63–81

    Article  MathSciNet  MATH  Google Scholar 

  11. Ghanem R, Spanos P (1991) Stochastic finite elements: a spectral approach. Springer, New York

    Book  MATH  Google Scholar 

  12. Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 13: 213–222

    Article  Google Scholar 

  13. Hou T, Wu X (1997) A multiscale finite element method for elliptic problems in composite materials and porous media. J Comput Phys 134: 169–189

    Article  MathSciNet  MATH  Google Scholar 

  14. Ji H, Chopp D, Dolbow J (2002) A hybrid extended finite/level set method for modeling phase transformations. Int J Numer Meth Eng 54: 1209–1233

    Article  MathSciNet  MATH  Google Scholar 

  15. Luo XY, Ni MJ, Ying A, Abdou M (2006) Application of the level set method for multi-phase flow computation in fusion engineering. Fusion Eng Des 81: 1521–1526

    Article  Google Scholar 

  16. Maître OL, Knio O, Najm H, Ghanem R (2004) Uncertainty propogation using wiener-haar expansions. J Comput Phys 197: 28–57

    Article  MathSciNet  MATH  Google Scholar 

  17. Maître OL, Najm H, Ghanem R, Knio O (2004) Multi-resolution analysis of wiener-type uncertainty propogation schemes. J Comput Phys 197: 502–531

    Article  MathSciNet  MATH  Google Scholar 

  18. Mathelin L, Hussaini M (2003) A stochastic collocation algorithm for uncertainty analysis. Tech. Rep. CR-2003-212153, NASA

  19. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Meth Eng 46: 131–150

    Article  MATH  Google Scholar 

  20. Moës N, Cloirec M, Cartraud P, Remacle JF (2003) A computational approach to handle complex microstructure geometries. Comput Methods Appl Mech Eng 192: 3163–3177

    Article  MATH  Google Scholar 

  21. Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21: 571–574

    Article  Google Scholar 

  22. Nouy A, Clément A (2010) Extended stochastic finite element method for the numerical simulation of heterogeneous materials with random material interfaces. Int J Numer Meth Eng 83: 1312–1344

    Article  MATH  Google Scholar 

  23. Nouy A, Schoefs F, Moës N (2007) X-sfem, a computational technique based on x-fem to deal with random shapes. Eur J Comput Mech 16: 277–293

    MATH  Google Scholar 

  24. Nouy A, Clément A, Schoefs F, Moës N (2008) An extended stochastic finite element method for solving stochastic partial differential equations on random domains. Comput Methods Appl Mech Eng 197: 4663–4682

    Article  MATH  Google Scholar 

  25. Osher S, Sethian J (1988) Fronts propogating with curvature-dependent speed: Algorithms based on hamilton-jacobi formulations. J Comput Phys 79: 12–49

    Article  MathSciNet  MATH  Google Scholar 

  26. Qian J, Cheng L, Osher S (2003) A level set-based eulerian approach for anisotropic wave propagation. Wave Motion 37: 365–379

    Article  MathSciNet  MATH  Google Scholar 

  27. Sanchez-Palencia E (1980) Non-homogeneous media and vibration theory. Springer, New York

    MATH  Google Scholar 

  28. Sethian J (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  29. Stefanou G, Nouy A, Clément A (2009) Identification of random shapes from images through polynomial chaos expansion of random level set functions. Int J Numer Meth Eng 79: 127–155

    Article  MATH  Google Scholar 

  30. Stolarska M, Chopp D, Moës N, Belytschko T (2001) Modelling crack growth by level sets in the extended finite element method. Int J Numer Meth Eng 51: 943–960

    Article  MATH  Google Scholar 

  31. Sukumar N, Chopp D, Moës N, Belytschko T (2001) Modeling holes and inclusions by level sets in the extended finite element method. Comput Methods Appl Mech Eng 190: 6183–6200

    Article  MATH  Google Scholar 

  32. Tan L, Zabaras N (2006) A level set simulation of dendritic solidification with combined features of front-tracking and fixed-domain methods. J Comput Phys 211: 36–63

    Article  MathSciNet  MATH  Google Scholar 

  33. Wan X, Karniadakis G (2005) An adaptive multi-element generalized polynomial chaos method for stochastic differential equations. J Comput Phys 209: 617–642

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang M, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192: 227–246

    Article  MATH  Google Scholar 

  35. Wiener N (1938) The homogenous chaos. Am J Math 60: 897–936

    Article  MathSciNet  Google Scholar 

  36. Xiu D (2010) Numerical methods for stochastic computations: a spectral method approach. Princeton University Press, Princeton

    MATH  Google Scholar 

  37. Xiu D, Hesthaven J (2005) High-order collocation methods for differential equations with random inputs. SIAM J Sci Comput 27: 1118–1139

    Article  MathSciNet  MATH  Google Scholar 

  38. Xiu D, Karniadakis G (2002) The wiener-askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 24: 619–644

    Article  MathSciNet  MATH  Google Scholar 

  39. Xiu D, Tartakovsky D (2006) Numerical methods for differential equations in random domains. SIAM J Sci Comput 28: 1167–1185

    Article  MathSciNet  MATH  Google Scholar 

  40. Zienkiewicz O, Taylor R (1989) The finite element method, 4th edn. McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Doostan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, C., Doostan, A. & Maute, K. Extended stochastic FEM for diffusion problems with uncertain material interfaces. Comput Mech 51, 1031–1049 (2013). https://doi.org/10.1007/s00466-012-0785-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-012-0785-8

Keywords

Navigation