Skip to main content
Log in

Stress-resultant models for ultimate load design of reinforced concrete frames and multi-scale parameter estimates

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this work, we present a new finite element for (geometrically linear) Timoshenko beam model for ultimate load computation of reinforced concrete frames. The proposed model combines the descriptions of the diffuse plastic failure in the beam-column followed by the creation of plastic hinges due to the failure or collapse of the concrete and of the re-bars. A modified multi-scale analysis is performed in order to identify the parameters for stress-resultant-based macro model, which is used to described the behavior of the Timoshenko beam element. For clarity, we focus upon the micro-scale models using the multi-fiber elements with embedded displacement discontinuities in mode I, which would typically be triggered by bending failure mode. More general case of micro-scale model capable of describing shear failure is described by Ibrahimbegovic et al. (Int J Numer Methods Eng 83(4):452–481, 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anthoine A, Guedes J, Pegon P (1997) Non-linear behavior of reinforced concrete beams: from 3D continuum to 1D member modeling. Comput Struct 65(6): 949–963

    Article  MATH  Google Scholar 

  2. Armero F, Ehrlich D (2006) Numerical modeling of softening hinges in thin Euler–Bernoulli Beams. Comput Struct 84: 641–656

    Article  MathSciNet  Google Scholar 

  3. Brancherie D, Ibrahimbegović A (2009) Novel anisotropic continuum–discrete damage model capable of representing localized failure of massive structures. part I: theoretical formulation and numerical implementation. Eng Comput 26(1–2): 100–127

    Google Scholar 

  4. Cipollina A, Lopez-Inojosa A, Florez-Lopez J (1995) A simplified damage mechanics approach to nonlinear analysis of frames. Comput Struct 54: 1113–1126

    Article  MATH  Google Scholar 

  5. Cusatis G, Bazant Z, Cedolin L (2006) Confinement-shear lattice csl model for fracture propagation in concrete. Comput Methods Appl Mech Eng 195(52): 7154–7171

    Article  MATH  Google Scholar 

  6. Dujc J, Brank B, Ibrahimbegovic A (2010) Multi-scale computational model for failure analysis of metal frames that includes softening and local buckling. Comput Meth Appl Mech Eng 199(21–22): 1371–1385

    Article  MathSciNet  MATH  Google Scholar 

  7. Ehrlich D, Armero F (2005) Finite element methods for the analysis of softening plastic hinges in beam and frames. Comput Mech 35: 237–264

    Article  MATH  Google Scholar 

  8. Florez-Lopez J (1998) Frame Analysis and Continuum Damage Mechanics. Eur J Mech A Solids 17(2): 269–283

    Article  MATH  Google Scholar 

  9. Gal E., Ganz A., Hadad L., Kryvoruk R. (2008) Development of a concrete unit cell. Int J Multiscale Comput Eng 6(5-6): 499–510

    Article  Google Scholar 

  10. Gregori J., Sosa P., Fernández Prada M, Filippou F (2007) A 3d numerical model for reinforced and prestressed concrete elements subjected to combined axial, bending, shear and torsion loading. Eng Struct 29(12): 3404–3419

    Article  Google Scholar 

  11. Ibrahimbegovic A (2009) Non linear solid mechanics. Springer, New York

    Book  Google Scholar 

  12. Ibrahimbegovic A, Boulkertous A, Davenne L, Brancherie D (2010) Modelling of reinforced-concrete structures providing crack-spacing based on X-FEM, ED-FEM and novel operator split procedure. Int J Numer Methods Eng 83(4): 452–481

    MathSciNet  MATH  Google Scholar 

  13. Ibrahimbegovic A, Brancherie D (2003) Combined hardening and softening constitutive model of plasticity: precursor to shear slip line failure. Comput Mech 31: 88–100

    Article  MATH  Google Scholar 

  14. Ibrahimbegovic A, Frey F (1993) Stress resultants finite element analysis of reinforced concrete plates. Eng Comput 10(1): 15–30

    Article  Google Scholar 

  15. Ibrahimbegovic A, Wilson E (1991) A modified method of incompatible modes. Commun Numer Methods Eng 7: 187–194

    Article  MATH  Google Scholar 

  16. Jirasek M (1997) Analytical and umerical solutions for frames with softening hinges. J Eng Mech ASCE 123(1): 8–14

    Article  Google Scholar 

  17. Kotronis P, Mazars J, Davenne L (2003) The equivalent reinforced concrete model for simulating the behavior of walls under dynamic shear loading. Eng Fract Mech 70(7–8): 1085–1097

    Article  Google Scholar 

  18. Lubliner J (1990) Plasticity theory. Mac-Millan, London

    MATH  Google Scholar 

  19. Marante M, Picon R, Florez-Lopez J (2004) Analysis of localization in frame members with plastic hinges. Int J Solids Struct 41: 3961–3975

    Article  MATH  Google Scholar 

  20. Marante M, Suárez L, Quero A, Redondo J, Vera B, Uzcategui M, Delgado S, León R, Núñez L, Flórez-López J (2005) Portal of damage: a web-based finite element program for the analysis of framed structure subjected to overloads. Adv Eng Softw 36: 346–358

    Article  MATH  Google Scholar 

  21. Moulin S, Davenne L, Gatuingt F (2003) Réponse statique d’une poutre en béton armé (section rectangulaire) à à comportement non linénaire. In: Technical report. Code Aster, Cachan

  22. Nanakorn P. (2000) A two-dimensional beam-column finite element with embedded rotational discontinuities. Comput Struct 82: 753–762

    Article  Google Scholar 

  23. Oller S, Barbat A (2006) Moment curvature damage model for bridges subjected to seismic loads. Comput Methods Appl Mech Eng 195(33–36): 4490–4511

    Article  MATH  Google Scholar 

  24. Pham B, Davenne L, Brancherie D, Ibrahimbegovic A (2010) Stress resultant model for ultimate load design of reinforced-concrete frames: combined axial force and bending moment. Comput Concr 7(4): 303–315

    Google Scholar 

  25. Rajasankar F, Nagesh R, Prasad A (2009) Modelling inelastic hinges using CDM for nonlinear analysis of reinforced concrete frame structures. Comput Concr 6(4): 319–341

    Google Scholar 

  26. Riva P, Cohn M (1990) Engineering approach to nonlinear analysis of concrete structures. J Struct Eng 116(8): 2162–2186

    Article  Google Scholar 

  27. Spacone E, Filippou F, Taucer F (1996) Fiber beam-column model for nonlinear analysis of RC frames. Earthq Eng Struct Dyn 25(7): 711–742

    Article  Google Scholar 

  28. Vecchio F, Emara M (1992) Shear deformations in reinforced concrete frames. ACI Struct J 89(1): 46–56

    Google Scholar 

  29. Zienkiewicz O, Taylor R (2000) The finite element method, 5th edn. Butterworth–Heinemann, Oxford

    MATH  Google Scholar 

  30. Zingales M, Elishako I (2000) Localization of the bending response in presence of axial load. J Solids Struct 37: 6739–6753

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Brancherie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pham, B.H., Brancherie, D., Davenne, L. et al. Stress-resultant models for ultimate load design of reinforced concrete frames and multi-scale parameter estimates. Comput Mech 51, 347–360 (2013). https://doi.org/10.1007/s00466-012-0734-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-012-0734-6

Keywords

Navigation