Skip to main content
Log in

Shakedown analysis with multidimensional loading spaces

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A numerical method for the computation of shakedown loads of structures subjected to varying thermal and mechanical loading is proposed for the case of multidimensional loading spaces. The shakedown loading factors are determined based on the lower bound direct method using the von Mises yield criterion. The resulting nonlinear convex optimization problem is solved by use of the interior-point method. Although the underlying theory allows for the consideration of arbitrary numbers of loadings in principle, until now applications have been restricted to special cases, where either one or two loads vary independently. In this article, former formulations of the optimization problem are generalized for the case of arbitrary numbers of loadings. The method is implemented into an interior-point algorithm specially designed for this method. For illustration, numerical results are presented for a three-dimensional loading space applied to a square plate with a central circular hole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weichert D, Maier G (2000) Inelastic analysis of structures under variable repeated loads. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  2. Maier G, Pastor J, Ponter ARS, Weichert D (2003) Direct methods of limit and shakedown analysis. In: de Borst R, Mang HA (eds) Comprehensive structural integrity: fracture of materials from nano to macro, volume 3: Numerical and computational methods. Elsevier, Amsterdam, pp 637–684

    Google Scholar 

  3. Weichert D, Ponter ARS (2009) Limit states of materials and structures. Springer, Wien/New York

    Google Scholar 

  4. Melan E (1938) Zur Plastizität des räumlichen Kontinuums. Ing-Arch 9: 116–126

    Article  MATH  Google Scholar 

  5. Melan E (1938) Der Spannungszustand eines “Mises-Hencky’sc hen” Kontinuums bei veränderlicher Belastung. Sitzungsberichte/Akademie der Wissenschaften in Wien, Mathematisch-Naturwissenschaftliche Klasse Abteilung IIa 147: 73–87

    Google Scholar 

  6. König JA (1987) Shakedown of elastic-plastic structures. Elsevier, Amsterdam

    Google Scholar 

  7. El-Bakry AS, Tapia RA, Tsuchiya T, Zhang Y (1996) On the formulation and theory of the Newton interior-point method for nonlinear programming. J Optim Theory Appl 89: 507–541

    Article  MathSciNet  MATH  Google Scholar 

  8. Gay DM, Overton ML, Wright MH (1998) A primal-dual interior method for nonconvex nonlinear programming. In: Yuan Y-X (ed) Advances in nonlinear programming. Kluwer Academic Publishers, Dordrecht, pp 31–56

    Chapter  Google Scholar 

  9. Potra FA, Wright SJ (2000) Interior-point methods. J Comput Appl Math 124: 281–302

    Article  MathSciNet  MATH  Google Scholar 

  10. Forsgren A, Gill PE, Wright MH (2002) Interior methods for nonlinear optimization. SIAM Rev 44(4): 525–597

    Article  MathSciNet  MATH  Google Scholar 

  11. Wright MH (2004) The interior-point revolution in optimization: History, recent developments and lasting consequences. Bull Am Math Soc 42(1): 39–56

    Article  Google Scholar 

  12. Vanderbei RJ (1999) LOQO: An interior-point code for quadratic programming. Optim Meth & Soft 11–12: 451–484

    Article  MathSciNet  Google Scholar 

  13. Griva I, Shanno DF, Vanderbei RJ, Benson HY (2008) Global convergence analysis of a primal-dual interior-point method for nonlinear programming. Algorithmic Oper Res 3(1): 12–19

    MathSciNet  Google Scholar 

  14. Byrd RH, Hribar ME, Nocedal J (2000) An interior-point algorithm for large-scale nonlinear programming. SIAM J Optim 9(4): 877–900

    Article  MathSciNet  Google Scholar 

  15. Waltz RA, Morales JL, Nocedal J, Orban D (2006) An interior algorithm for nonlinear optimization that combines line search and trust region steps. Math Prog 107(3): 391–408

    Article  MathSciNet  MATH  Google Scholar 

  16. Wächter A (2002) An interior point algorithm for large-scale nonlinear optimization with applications in process engineering. PhD thesis, Carnegie Mellon University, Pittsburgh

  17. Wächter A, Biegler LT (2005) Line-search filter methods for nonlinear programming: Motivation and global convergence. SIAM J Optim 16(1): 1–31

    Article  MathSciNet  MATH  Google Scholar 

  18. Wächter A, Biegler LT (2006) On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Prog 106(1): 25–57

    Article  MATH  Google Scholar 

  19. Benson HY, Shanno DF, Vanderbei RJ (2003) A comparative study of large-scale nonlinear optimization algorithms. In: Di Pillo G, Murli A (eds) High performance algorithms and software for nonlinear optimization. Princeton University, Kluwer Academic Publishers, Princeton, Dordrecht

    Google Scholar 

  20. Morales JL, Nocedal J, Waltz RW, Lie G, Goux J-P (2003) Assessing the potential of interior methods for nonlinear optimization. In: Biegler LT, Ghattas O, Heinkenschloss M, van Bloemen Waander B (eds) Large-scale PDE-constrained Optimization, vol 30, Lecture Notes in Computational Science and Engineering, pp 167–183, Springer

  21. Nguyen AD, Hachemi A, Weichert D (2008) Application of the interior-point method to shakedown analysis of pavements. Int J Numer Methods Eng 75: 414–439

    Article  MATH  Google Scholar 

  22. Simon J-W, Chen M, Weichert D (2010) Shakedown analysis combined with the problem of heat conduction, vol 2. In: Proceedings of the ASME 2010 Pressure Vessels & Piping Conference, pp 133–142, Bellevue

  23. Christiansen E, Andersen KD (1999) Computation of collapse states with von Mises type yield condition. Int J Numer Methods Eng 46(8): 1185–1202

    Article  MathSciNet  MATH  Google Scholar 

  24. Andersen ED, Jensen B, Jensen J, Sandvik R, Worsøe U (2009) MOSEK version 6. Technical Report TR–2009–3, MOSEK. URL http://www.mosek.com

  25. Trillat M, Pastor J (2005) Limit analysis and Gurson’s model. Eur J Mech A/Solids 24: 800–819

    Article  MATH  Google Scholar 

  26. Bisbos CD, Makrodimopoulos A, Pardalos PM (2005) Second-order cone programming approaches to static shakedown analysis in steel plasticity. Optim Meth & Soft 20(1): 25–52

    Article  MathSciNet  MATH  Google Scholar 

  27. Makrodimopoulos A (2006) Computational formulation of shakedown analysis as a conic quadratic optimization problem. Mech Res Commun 33: 72–83

    Article  MATH  Google Scholar 

  28. Krabbenhøft K, Lyamin AV, Sloan SW (2007) Formulation and solution of some plasticity problems as conic programs. Int J Solids Struct 44: 1533–1549

    Article  Google Scholar 

  29. Skordeli M, Bisbos C (2010) Limit and shakedown analysis of 3d steel frames via approximate ellipsoidal yield surfaces. Eng Struct 32(6): 1556–1567

    Article  Google Scholar 

  30. Sturm JF (1999) Using SeDuMi 1.02. a MATLAB toolbox for optimization over symmetric cones. Optim Meth & Soft 11(12): 625–653

    Article  MathSciNet  Google Scholar 

  31. Tütüncü RH, Toh KC, Todd MJ (2003) Solving semidefinite-quadratic-linear programs using SDPT3. Math Program Ser B 95: 189–217

    Article  MATH  Google Scholar 

  32. Munoz JJ, Bonet J, Huerta A, Peraire J (2009) Upper and lower bounds in limit analysis: Adaptive meshing strategies and discontinuous loading. Int J Numer Methods Eng 77(4): 471–501

    Article  MathSciNet  MATH  Google Scholar 

  33. Liu YH, Zhang XF, Cen ZZ (2005) Lower bound shakedown analysis by the symmtric Galerkin boundary element method. Int J Plast 21: 21–42

    Article  MATH  Google Scholar 

  34. Le CV, Gilbert M, Askes H (2009) Limit analysis of plates using the EFG method and second-order conic programming. Int J Numer Methods Eng 78(13): 1532–1552

    Article  MathSciNet  MATH  Google Scholar 

  35. Le CV, Nguyen-Xuan H, Askes H, Bordas S, Rabczuk T, Nguyen-Vinh H (2010) A cell-based smoothed finite element method for kinematic limit analysis. Int J Numer Methods Eng 83(12): 1651–1674

    Article  MathSciNet  MATH  Google Scholar 

  36. Tran TN, Liu GR, Nguyen-Xuan H, Nguyen-Thoi T (2010) An edge-based smoothed finite element method for primal-dual shakedown analysis of structures. Int J Numer Methods Eng 82: 917–938

    MathSciNet  MATH  Google Scholar 

  37. Chen M, Hachemi A, Weichert D (2010) A non-conforming finite element for limit analysis of periodic composites. PAMM Proc Appl Math Mech 10: 405–406

    Article  Google Scholar 

  38. Ngo N, Tin-Loi F (2007) Shakedown analysis using the p-adaptive finite element method and linear programming. Eng Struct 29(1): 46–56

    Article  Google Scholar 

  39. Ardito R, Cocchetti G, Maier G (2008) On structural safety assessment by load factor maximization in piecewise linear plasticity. Eur J Mech A/Solids 27: 859–881

    Article  MathSciNet  MATH  Google Scholar 

  40. Garcea G, Leonetti L (2009) Numerical methods for the evaluation of the shakedown and limit loads. In: Ambrosio J et al (eds) 7th EUROMECH Solid Mechanics Conference, Lisbon, Portugal

  41. Lyamin AV, Sloan SW (2002) Lower bound limit analysis using nonlinear programing. Int J Numer Methods Eng 55: 573–611

    Article  MATH  Google Scholar 

  42. Krabbenhøft K, Damkilde L (2003) A general nonlinear optimization algorithm for lower bound limit analysis. Int J Numer Methods Eng 56: 165–184

    Article  MATH  Google Scholar 

  43. Pastor F, Thoré Ph, Loute E, Pastor J, Trillat M (2008) Convex optimization and limit analysis: application to Gurson and porous Drucker-Prager materials. Eng Fract Mech 75: 1367–1383

    Article  Google Scholar 

  44. Pastor F, Loute E, Pastor J, Trillat M (2009) Mixed method and convex optimization for limit analysis of homogeneous Gurson materials: a kinematic approach. Eur J Mech A/Solids 28: 25–35

    Article  MATH  Google Scholar 

  45. Pastor F, Loute E (2010) Limit analysis decomposition and finite element mixed method. J Comput Appl Math 234(7): 2213–2221

    Article  MathSciNet  MATH  Google Scholar 

  46. Zouain N, Borges L, Silveira J (2002) An algorithm for shakedown analysis with nonlinear yield functions. Comput Methods Appl Mech Eng 191: 2463–2481

    Article  MathSciNet  MATH  Google Scholar 

  47. Vu DK, Yan AM, Nguyen-Dang H (2004) A dual form for discretized kinematic formulation in shakedown analysis. Int J Solids Struct 41: 267–277

    Article  MATH  Google Scholar 

  48. Hachemi A, An LTH, Mouhtamid S, Tao PD (2004) Large-scale nonlinear programming and lower bound direct method in engineering applications. In: An LTH, Tao PD (eds) Modelling, Computation and Optimization in Information Systems and Management Sciences. Hermes Science Publishing, London, pp 299–310

    Google Scholar 

  49. Hachemi A, Mouhtamid S, Weichert D (2005) Progress in shakedown analysis with applications to composites. Arch Appl Mech 74: 762–772

    Article  MATH  Google Scholar 

  50. Akoa FB, Hachemi A, An LTH, Mouhtamid S, Tao PD (2007) Application of lower bound direct method to engineering structures. J Glob Optim 37(4): 609–630

    Article  MATH  Google Scholar 

  51. Vu DK, Staat M (2007) Analysis of pressure equipment by application of the primal-dual theory of shakedown. Commun Numer Methods Eng 23(3): 213–225

    Article  MATH  Google Scholar 

  52. An LTH, Tao PD (1997) Solving a class of linearly constrained indefinite quadratic problems by DC algorithms. J Glob Optim 11: 253–285

    Article  MATH  Google Scholar 

  53. An LTH, Tao PD (2005) The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems. Annals Oper Res 133: 23–46

    Article  MathSciNet  MATH  Google Scholar 

  54. Simon J-W, Weichert D (2010) Interior-point method for the computation of shakedown loads for engineering systems. In: ASME Conf Proc ESDA 2010, vol 4, pp. 253–262, Istanbul

  55. Simon J-W, Chen M, Weichert D (2011) Shakedown analysis combined with the problem of heat conduction. J Pressure Vessel Technol (in press)

  56. Simon J-W, Weichert D (2011) Numerical lower bound shakedown analysis of engineering structures. Comput Methods Appl Mech Eng 200: 2828–2839

    Article  MathSciNet  MATH  Google Scholar 

  57. Groß-Weege J (1997) On the numerical assessment of the safety factor of elastic-plastic structures under variable loading. Int. J Mech Sci 39(4): 417–433

    Article  MATH  Google Scholar 

  58. Vanderbei RJ, Carpenter TJ (1993) Symmetric indefinite systems for interior point methods. Math Prog 58: 1–32

    Article  MathSciNet  MATH  Google Scholar 

  59. Kuhn HW, Tucker AW (1950) Nonlinear programming. In: Neyman J (ed) Second Berkeley symposium on mathematical statistics and probability. University of California Press, Berkeley, pp 481–492

    Google Scholar 

  60. Nguyen-Thoi T, Vu-Do HC, Rabczuk T, Nguyen-Xuan H (2010) A node-based smoothed finite element method (NS-FEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular and tetrahedral meshes. Comput Methods Appl Mech Eng 199(45–48): 3005–3027

    Article  MathSciNet  MATH  Google Scholar 

  61. Belytschko T (1972) Plane stress shakedown analysis by finite elements. Int J Mech Sci 14(9): 619–625

    Article  Google Scholar 

  62. Corradi L, Zavelani A (1974) A linear programming approach to shakedown analysis of structures. Comput Methods Appl Mech Eng 3: 37–53

    Article  MathSciNet  Google Scholar 

  63. Carvelli V, Cen ZZ, Liu Y, Maier G (1999) Shakedown analysis of defective pressure vessels by a kinematic approach. Arch Appl Mech 69: 751–764

    Article  MATH  Google Scholar 

  64. Schwabe F (2000) Einspieluntersuchungen von Verbundwerkstoffen mit periodischer Mikrostruktur. PhD thesis, Institute of General Mechanics, RWTH Aachen University, Germany

  65. Chen HF, Ponter ARS (2001) Shakedown and limit analyses for 3-D structures using the linear matching method. Int J Press Vessels Piping 78: 443–451

    Article  Google Scholar 

  66. Zhang T, Raad L (2002) An eigen-mode method in kinematic shakedown analysis. Int J Plast 18: 71–90

    Article  MATH  Google Scholar 

  67. Muscat M, Mackenzie D, Hamilton R (2003) Evaluating shakedown under proportional loading by non-linear static analysis. Comput Struct 81: 1727–1737

    Article  Google Scholar 

  68. Garcea G, Armentano G, Petrolo S, Casciaro R (2005) Finite element shakedown analysis of two-dimensional structures. Int J Numer Methods Eng 63: 1174–1202

    Article  MATH  Google Scholar 

  69. Wiechmann K, Stein E (2006) Shape optimization for elasto-plastic deformation. Int J Solids Struct 43: 7145–7165

    Article  MATH  Google Scholar 

  70. Mouhtamid S (2007) Anwendung direkter Methoden zur industriellen Berechnung von Grenzlasten mechanischer Komponenten. PhD thesis, Institute of General Mechanics, RWTH Aachen University, Germany

  71. Chen S, Liu Y, Cen Z (2008) Lower bound shakedown analysis by using the element free Galerkin method and non-linear programming. Comput Methods Appl Mech Eng 197(45-48): 3911–3921

    Article  MATH  Google Scholar 

  72. Krabbenhøft K, Lyamin AV, Sloan SW (2007) Bounds to shakedown loads for a class of deviatoric plasticity models. Comput Mech 39: 879–888

    Article  MathSciNet  Google Scholar 

  73. Zhang G (1992) Einspielen und dessen numerische Behandlung von Flächentragwerken aus ideal plastischem bzw kinematisch verfestigendem Material. PhD thesis, Institut für Mechanik, University Hannover

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaan-Willem Simon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon, JW., Weichert, D. Shakedown analysis with multidimensional loading spaces. Comput Mech 49, 477–485 (2012). https://doi.org/10.1007/s00466-011-0656-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-011-0656-8

Keywords

Navigation